
Comparative Statics

Motivation

When we build theories in political science, we are often particularly interested in how the

behavior of a set of actors changes as some feature of the political environment changes.

For instance, we may want to know how inequality affects marginal tax rates in a democ-

racy or how alliance structures affect democratization. Before asserting “H1” and going to

the data, it is necessary first to demonstrate that a hypothesized relationship between two

variables follows logically from a set of explicit assumptions. This exercise is referred to as

“comparative statics.”

Parameterized Optimization

Let’s suppose we want to build a theory of how much time a member of Congress spends

fundraising. We will first make a set of assumptions about what the legislator want to achieve,

for example, reelection. We then will make some additional assumptions about how time

spent fundraising and maps onto these goals. In making these assumptions, we will presume

that this mapping depends on a handful of parameters. We may think, for instance, that the

legislator’s popularity or their status in Congressional leadership will affect this mapping.

These assumptions together will yield a parameterized objective function for the legislator,

f(x; θ)
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where x is time spent fundraising and θ is a parameter. To find out how much time a

legislator spends fundraising given θ, we solve

max
x

f(x; θ)

We are ultimately probably interested in how something in θ such as electoral danger affects

time spent fundraising. This will allow us to derive a hypothesis that we then test empirically.

Formally, we are interested in how

x∗(θ) ≡ arg max
x

f(x; θ)

changes in θ. That is, we want to know the sign of ∂
∂θ
x∗(θ). The set of maximizers, x∗(θ), is

referred to as the solution correspondence. If we have a closed-form solution for x∗(θ),

finding how x∗(θ) changes in θ is very straightforward. For example, if

f(x; θ) = θ ln(x)− x2

for θ ≥ 0, then by first order conditions,

θ

x
− 2x = 0

which yields

x∗(θ) =

√
θ

2

We see clearly then that x∗(θ) is increasing in θ. Very often, however, we will want to make

our assumptions weak and general. This makes them more likely to hold in the real world

and therefore make the results of the model more robust. Do we really believe that the

legislator’s utility function takes the very precise form as above? Probably not. It is more

reasonable to think that the cost of fundraising in terms of time is increasing in x. We
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may also assume diminishing returns to fundraising. We may also assume that the marginal

benefit of each hour spent fundraising in increasing in electoral danger. That is a more

reasonable set of assumptions than a specific functional form. These assumptions gives us a

general utility function

f(x; θ) = v(x; θ)− c(x)

where v(x; θ) is increasing in x for all θ and θ for all x and c(x) is increasing in x. Now we

cannot find a closed-form solution for x∗(θ) to help us. Fortunately, we have an extremely

powerful tool to help us with this problem.

The Implicit Function Theorem

The implicit function theorem states that as long as a certain condition is satisfied, we

can use differential calculus to characterize how x∗(θ) varies in response to small changes in

θ. In low dimension, the implicit function theorem states:

Theorem 1 (Implicit Function Theorem (Low Dimension)) Let x∗ ∈ R solve g(x, y) =

0 at y∗ ∈ R. If g(·, ·) is continuously differentiable and ∂
∂x
g(x∗, y∗) 6= 0 then for some open set

A containing x∗ and an open set B containing y∗, there exists a continuously differentiable

function h : B → A with g(h(y), y) = 0. The derivative of this function at y∗ is given by

∂h(y∗)

∂y
= −(

∂g(x∗, y∗)

∂y
)(
∂g(x∗, y∗)

∂x
)−1

To see how this applies to comparative statics, note that the first-order conditions of a

parameterized optimization problem give us the condition g(x, y) = 0. The problem must,

of course, have a solution to begin with. In the next lecture we will explore how verify that

a general program has a solution. In this lecture we will assume that all problems have

solutions, i.e. that x∗(θ) is always nonempty.
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Returning to the example, we know that ∂f(x∗;θ)
∂x

= 0. By the implicit function theorem

∂x∗(θ)

∂θ
= −∂

2f(x; θ)

∂x∂θ
(
∂2f(x; θ)

∂x2
)−1 = −∂

2v(x; θ)

∂x∂θ
(
∂2v(x; θ)

∂x2
− ∂2c(x)

∂x2
)−1

We assumed that v(x; θ) is increasing and concave in x so ∂2v(x;θ)
∂x2

< 0. If we assume that

marginal cost is non-decreasing in x, then ∂2c(x)
∂x2
≥ 0. The denominator is therefore negative

which cancels out the negative scalar. The sign of ∂2v(x;θ)
∂x∂θ

will therefore tell us how x∗(θ)

changes with θ.

The implicit function theorem generalizes to higher dimensions with n choice variables

and m parameters.

Theorem 2 (Implicit Function Theorem) Let x∗ ∈ Rn solve f(x, y) = 0 at y ∈ Rm.

If f1(·) through fn(·) are continuously differentiable in each coordinate of x and y and the

Jacobian matrix with respect to the endogenous variables is nonsingular, then for some open

set A containing x∗ and an open set B containing y∗, there exists a continuously differentiable

function φ : B → A with f(φ(y), y) = 0. The derivative of this function at y∗ is given by the

n× k matrix

Dyφ(y∗) = −[Dxf(x∗, y∗)]−1Dyf(x∗, y∗)

Returning to our application, let x = (x1, x2, ...xn) and θ = (θ1, θ2, ..., θm). Assume that

a single-valued solution to

max
x

f(x; θ)

exists for all θ, x∗(θ). Now say we want to know how x∗(θ) changes with θ. That is, we are

interested in finding the m× n Jacobian matrix of x∗(θ), Dθx
∗(θ).

The implicit function theorem tells us that

Dθx
∗(θ) = −[Hxf(x, θ)]−1Dθf(x, θ)

where Hxf(x∗, θ) is the n× n Hessian matrix of f(x∗, θ) with respect to the choice variables
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and Dθf(x∗, θ) is the n×m Jacobian of f(x∗, θ) with respect to the parameters. Note that

the implicit function theorem requires that H be nonsingular.

Example: Let

f(x, y; θ) = v(x) + θw(y)− c(x, y)

where v(x) and w(y) are increasing an concave and c(x, y) is increasing and convex in both

arguments. By construction a solution will exist that is characterized by first-order condi-

tions. We want to find

∂x∗(θ)∂θ

∂y∗(θ)
∂θ

 . By the implicit function theorem,

∂x∗(θ)∂θ

∂y∗(θ)
∂θ

 = −

∂2f(x,y;θ)∂x2
∂2f(x,y;θ)
∂x∂y

∂2f(x,y;θ)
∂x∂y

∂2f(x,y;θ)
∂y2


−1 ∂2f(x,y;θ)∂x∂θ

∂2f(x,y;θ)
∂y∂θ



= −

∂2v(x)∂x2
− ∂2c(x,y)

∂x2
−∂2c(x,y)

∂x∂y

−∂2c(x,y)
∂x∂y

∂2θw(y)
∂y2

− ∂2c(x,y)
∂y2


−1  0

∂w(y)
∂y



= − 1

det(H)

∂2θw(y)∂y2
− ∂2c(x,y)

∂y2
∂2c(x,y)
∂x∂y

∂2c(x,y)
∂x∂y

∂2v(x)
∂x2
− ∂2c(x,y)

∂x2


 0

∂w(y)
∂y



= − 1

det(H)

 ∂2c(x,y)
∂x∂y

∂w(y)
∂y

(∂
2v(x)
∂x2
− ∂2c(x,y)

∂x2
)∂w(y)

∂y


By second order conditions, det(H) > 0. By the concavity of v(·) and convexity of c(·, ·),

(∂
2v(x)
∂x2
− ∂2c(x,y)

∂x2
) < 0. By assumption ∂w(y)

∂y
> 0. Therefore y∗(θ) > 0. We have not yet made

any assumptions about ∂2c(x,y)
∂x∂y

. Since −∂w(y)
∂y

< 0, if ∂2c(x,y)
∂x∂y

≥ 0, then x∗(θ) ≤ 0. Otherwise,

x∗(θ) > 0. �

A few caveats are in order before moving on. In all of our examples, x∗(θ) is nonempty

and singleton. In general, x∗(θ) may be empty or multi-valued. It is your responsibility to

first show that a solution exists before applying the implicit function theorem. When x∗(θ)

5



is multi-valued, the implicit function works locally for every element of x∗(θ). However,

the sign of the derivative may be different at different optima. Additionally, FOCs require

the differentiability of f . In practice, we may deal with functions that are discontinuous

or not differentiable. For these cases, we will need a different tool for comparative statics.

In practice you will also need to check that H is non-singular. Finally, we have ignored

constraints in this treatment of the implicit function theorem. The implicit function theorem

is sufficiently general to be used in equality and inequality constrained problems. Simply

apply the theorem to the first-order conditions of a Lagrangian or to the problem’s KKT

conditions.

The Envelope Theorem

So far we have been analyzing the behavior of the maximizers of a parameterized optimization

problem. We often will also want to analyze how the value of a parameterized optimization

problem changes with θ. The function

V (θ) ≡ f(x∗(θ); θ)

is referred to as the value function or indirect utility function for the problem

max
x

f(x; θ)

The sign of ∂V (θ)
∂θ

tells us how an actor’s utility changes for a small rise in θ given that she

is maximizing. This is ostensibly a non-trivial exercise: θ has two effects on V (θ), a direct

effect and an indirect effect that operates through x∗(θ).

Theorem 3 (The Envelope Theorem) For some θ, suppose the unique maximizer x∗(θ)
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is locally characterized by first order conditions

∂f(x∗(θ), θ)

∂x
= 0

Suppose that the conditions of the implicit function theorem hold locally so that x∗(·) is a

differentiable function of θ. Then

∂V (θ)

∂θ
=
∂f(x∗(θ), θ)

∂θ

The proof of the envelope theorem is remarkably simple. By first order conditions,

∂f(x;θ)
∂x

= 0 at the optimum. Then by the chain rule,

∂V (θ)

∂θ
=
∂f(x∗(θ); θ)

∂x

∂x∗(θ)

∂θ
+
∂f(x∗(θ); θ)

∂θ

∂θ

∂θ
=
∂f(x∗(θ); θ)

∂θ

This is a powerful result. As θ changes, so does x∗(θ). Therefore we need to take into

account both the direct effect of θ on utility but also the change that comes indirectly from

the change in x∗(θ). What the envelope theorem says is that the indirect effect does not

matter! Only the direct effect of the exogenous parameter needs to be considered even

though the exogenous parameter may enter the value function indirectly.

Example: Let’s revisit the earlier fundraising example where f(x; θ) = θ ln(x) − x2 and

x∗(θ) =
√

θ
2
. This gives us V (θ) = θ ln(

√
θ
2
)− θ

2
.

∂V (θ)

∂θ
= ln(

√
θ

2
)− 1

2
+ θ

∂

∂θ
ln(

√
θ

2
)

θ
∂

∂θ
ln(

√
θ

2
) = θ

√
2

θ

∂

∂θ

√
θ

2
= θ

√
2

θ

1√
2

∂

∂θ

√
θ =

1

2

√
θ√
θ

=
1

2

Therefore

∂V (θ)

∂θ
= ln(

√
θ

2
) =

∂f(x, θ)

∂θ

∣∣∣
x∗(θ)
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For θ > 2, this term is positive. �

Example: For f(x, y; θ) = v(x) + θw(y) − c(x, y), V (θ) = v(x∗(θ)) + θw(y∗(θ)) −

c(x∗(θ), y∗(θ)). By the envelope theorem, ∂V (θ)
∂θ

= w(y∗(θ)) ≥ 0. �

As with the implicit function theorem, this lecture ignores constraints. If a problem has

constraints, the envelope theorem can still be applied using the Lagrangean.

Correspondences

We have so far been assuming that x∗(θ) is a singleton for all θ. We have similarly been

assuming that x ∈ R and ignoring the possibility of constraints. We typically assume that

x ∈ G(θ) where G is called a feasible set. If G(θ) depends on θ, then unless G(θ) is a

singleton, then we need a more general concept than function to think about the properties

of G(θ). (Why?)

Given two sets X and Y , correspondence, G : X ⇒ Y is a rule that assigns to every

element x ∈ X a subset G(x) of Y . Correspondences are therefore sometimes referred to as

“set valued functions.”

Example: Let X = R+ and Y = R+. G(x) = [0, x] is a correspondence. �

Example: Let X = {1, 2, 3, 4, 5, 6} and let G(x) = {z ∈ X : z ≥ x}. This correspondence

returns all the elements of x that are greater than or equal to the input e.g. G(4) = {4, 5, 6}.

�

We refer to x∗(θ) as a solution correspondence because there may be more than one

solution to a problem given θ.

A correspondence if compact valued if G(x) is a compact set. It is called convex

valued if G(x) is convex. It is called closed valued if G(x) is closed. A fixed point of a

correspondence is a point x ∈ X such that x ∈ G(x).

A correspondence G : X ⇒ Y is upper hemicontinuous at x ∈ X if for every open

subset V of Y with G(x) ⊆ V , there exists a δ > 0 such that G(Nδ(x)) ⊆ V . G is called
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upper hemicontinuous if it is upper hemicontinuous on all of X.

Upper hemicontinuity is easier to visualize if G is closed valued and X is closed. The

graph of G : X → Y , is defined as

Γ(G) = {(x, y) ∈ X × Y : y ∈ G(x)}

If G is upper hemicontinuous and closed valued and X is closed, then Γ(G) is closed. If Y

is compact, the converse is also true.

Uhc can also be characterized with sequences. If x∗(θ) is a solution correspondence and

θn → θ0 is a sequence of parameters in the parameter space Θ, then θn induces a sequence

of subsets of the feasible choice set, x∗(θn). Now consider a sequence of optimal choices that

this sequence induces which converges to a choice x. The solution correspondence x(θ) is

uhc at x∗(x0) if for all such convergent sequences of choices and convergent sequences of

parameters, limx∗(xn) = x ∈ x∗(x0).

Maximum Theorem

As we have seen, it is rare that we will be able to find an explicit solution correspondence.

Often, however, we can appeal to properties of the objective function and constraint set to

infer properties of the constraint correspondence. We saw above that we can exploit the

differentiability of an objective function to learn about the properties of locally smooth so-

lution correspondences and value functions. Our problems, however, will not always be so

well behaved. A common utility function in spatial models is the absolute loss function,

u(x; z) = −|x− z|. We cannot use the implicit function for comparative statics here. Intu-

itively, however, we should be able to exploit the continuity of the objective function to learn

about the solution correspondence. The maximum theorem does just that. A “light” ver-

sion of it is presented here where it is assumed that the feasible set, G, is independent of

θ.
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Theorem 4 (Maximum) If f : X×Θ→ R is continuous and the feasible set G is compact,

then V (θ) is continuous and x∗(θ) is nonempty, compact-valued, and upper hemicontinuous.

The result of the theorem is that if the elements of an optimization problem are sufficiently

continuous, then some, but not all, of that continuity is preserved in the solutions. The

Maximum theorem is also referred to as “The Theorem of the Maximum,” “The Continuous

Maximum Theorem,” and “Berge’s Theorem of the Maximum.” We will revisit this and see

the full version in the next lecture when we study the existence of solutions.

Monotone Comparative Statics

Occasionally, even continuity of an objective function may be too strong of an assumption.

A powerful and underutilized tool in political research, monotone comparative statics,

allows us to study the properties of x∗(θ) even when f is discontinuous.

We say that f(x, θ) satisfies the single-crossing property if for all x > x′ and θ > θ′,

f(x, θ′)− f(x′, θ′) ≥ 0 =⇒ f(x, θ)− f(x′, θ) ≥ 0

and

f(x, θ′)− f(x′, θ′) > 0 =⇒ f(x, θ)− f(x′, θ) > 0

Intuitively if the two objective functions for different θ cross only once, the function satisfies

the single crossing property.

A sufficient condition for single crossing is increasing differences. A function displays

increasing differences if

f(x, ·)− f(x′, ·)

is weakly increasing in θ: if f(x, θ′)− f(x′, θ′) ≥ 0, then

f(x, θ)− f(x′, θ) ≥ f(x, θ′)− f(x′, θ′) ≥ 0
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and f is single crossing.

The central result of monotone comparative statics comes from Milgrom and Shannon

(1994).

Theorem 5 (Milgrom and Shannon) If the single crossing condition holds, then x∗(θ)

is weakly increasing in θ.

This result generalizes to higher dimensions.

If X ⊆ Rn and Θ ⊆ Rm, the set X × Θ is a product set if it can be represented by

the Cartesian product of subsets of R. For example, [a, b] × [a, b] but not {a, b : x ≥ 0, y ≥

0, x+ y ≤ 1}. A product set is a special type of chain.

A function f : X × Θ → R is supermodular if X × Θ is a product set and f has

increasing differences for all pairs of arguments of the function. Supermodularity generalizes

the notion of “complementarity.” If f is differentiable, then f is supermodular if all off-

diagonal elements of Hf are positive i.e. if the cross partial derivative of all pairs of variables

are positive.

Theorem 6 (Topkis) Consider the problem

max
x∈X

f(x, θ)

where θ ∈ Θ is a parameter. If f is supermodular, then every component of x∗(θ) is weakly

increasing in θ

A rise in θ leads the decision maker to directly raise each xi. Because the xi are all

complementary to one another, all indirect effects are also positive. Because the xi are all

complementary to one another, all indirect effects are also positive. Hence the “monotone”

in monotone comparative statics. The power of this approach is its generality. Functions

do not even need to be continuous for us to do comparative static analysis. All we need is

supermodularity.
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Exercises

1) Prove that if f is differentiable, then f has increasing differences if and only if ∂2f(x,θ)
∂x∂θ

≥ 0.

2) Consider the parameterized optimization problem

max
x∈[0,1]

(1− x)p(x) + q(1− p(x))

where p(·) > 0 is strictly increasing and concave. Assume that x∗ is on the interior of [0, 1].

i) Use the implicit function theorem to show how the optimal choice of x given q, x∗(q)

changes as q changes.

ii) How does the value function change as q changes?

3) Consider the parameterized optimization problem

max
x,z

f(x, z; θ)

where x, y, θ ∈ R. Assume f is twice continuously differentiable. Let fij denote ∂2f
∂i∂j

for

i, j ∈ {x, z, θ} i.e. fxx is the second derivative of f and fxz is the cross partial derivative of

f with respect to x and z. Let (x∗(θ), z∗(θ)) be a solution.

i) What conditions on fxx, fzz, and fxz must hold for (x∗(θ), z∗(θ)) to be a local maximum?

(Hint: what must be true of the Hessian matrix with respect to choice variables at a local

maximum?)

ii) Use the implicit function theorem to characterize ∂
∂θ
x∗(θ) and ∂

∂θ
z∗(θ) in terms of fij.

iii) Let fxθ = 0 , fzθ < 0, fxz > 0. Describe the comparative statics. Now let fxz < 0

and describe the comparative statics. Interpret this result.

iv) Show that if f is supermodular, then ∂
∂θ
x∗(θ) > 0 and ∂

∂θ
z∗(θ) > 0.
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