
Linear Spaces

Motivation

In political science research, we often concern ours with objects that can be added and

scaled in natural ways. This is especially true in quantitative research when working with

quantities such as GDP, vote share, or tax rates. If candidate one receives v1 votes and

candidate two receives v2 votes, then the number of votes cast is v1 + v2. Lists of political

quantities can similarly be added and scaled item by item. If candidate one’s strategy

for advertising spending in 50 states is x = (x1, x2, ..., x50), then 2x = (2x1, 2x2, ...2x50) is

another advertising strategy in which he or she doubles advertising spending in each state.

Similarly x + (y, 0, ..., 0) = (y + x1, x2, ...x50) is another advertising strategy in which an

additional y is spent in state one. Note that these addition and scaling operations do not

change the fundamental nature of the objects. After applying operations to an advertising

budget, we are left with another advertising budget. This distinguishes linear spaces from

sets for which it is nonintuitive how to scale and add objects that remain in the set such

as the set of all countries. This lecture introduces the spaces in which we can combine and

scale objects into new objects of the same type.

Linear Space

A linear space is a set X whose elements have the following properties:

Additivity
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For every x, y ∈ X, there exists another element x + y ∈ X called the sum of x and y

such that

1. x+ y = y + x (commutativity)

2. (x+ y) + z = x+ (y + z) (associativity)

3. There exists an element 0 ∈ X such that x+ 0 = x

4. For every x ∈ X, there exists a unique element −x ∈ X such that x+ (−x) = 0

Homogeneity

For every x ∈ X and α ∈ R, there exists and element αx ∈ X called the scalar multiple

of x such that

5. (αβ)x = α(βx) (associativity)

6. 1x = x

The addition and scalar multiplication operators obey distributive rules of arithmetic:

7. α(x+ y) = αx+ αy

8. (α + β)x = αx+ βx

A linear space is alternatively referred to as a “vector space” and its elements called

“vectors.”

In political science we do almost all of our work in one of the most common linear spaces,

Rn. Linear spaces generalize the familiar algebra of Rn. The universe of linear spaces is

much more general than Rn, however. Sets of real sequences and polynomials, for example,

are linear spaces. Some common fields, however, are not linear spaces.

Example: Is Z a linear space? Note that Z satisfies additivity. For any x, y ∈ Z, x+y ∈ Z.

It does not, however, have the property of homogeneity. Let x = 1 and α = 1/2. Clearly

αx /∈ Z.

Linear Subspaces

A linear combination of elements in a set S ⊆ X is a finite sum of the form
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n∑
i=1

αixi

where xi ∈ S and αi ∈ R for all i. The span of a set of elements S is the set of all linear

combinations of elements in S:

span(S) = {
n∑

i=1

αixi : xi ∈ S, αi ∈ R for all i}

Example: The span of {(1, 0), (0, 2)} in R2 is R2.

Example: The span of {(1, 0), (0, 2), (1, 1)} in R2 is R2.

Example: The span of {(1, 0), (2, 0)} in R2 is the set of all elements of R2 such that the

second term is zero.

Example: Is (1, 0) in the span of {(1, 1), (2, 1)}? To answer, we need to find real numbers

a1 and a2 such that a1(1, 1) + a2(2, 1) = (1, 0). This is a simple system of equations:

a1 + 2a2 = 0

a1 + a2 = 0

The solution to this system is a1 = −1 and a2 = 1. Now we have (−1,−1) + (2, 1) = (1, 0).

A subset S of a linear spaceX is a subspace if for every x, y ∈ S, every linear combination

of x and y, αx+ βy, is in S. To verify that a subset S is a subspace, it is sufficient to show

that it satisfies additivity and homogeneity (why?). That is, we only need to verify that

a subset S is closed under addition and scalar multiplication. A set S is closed under

addition if for all x, y ∈ S, x+ y ∈ S. The set S is closed under scalar multiplication

if αx ∈ S for all x ∈ S and α ∈ R.

Example Consider the set S = {x ∈ R2|x = α(1, 0);α ∈ R}. Is S a subspace of R2? First

check that it is closed under addition. Take any x, y ∈ S. Then x = α(1, 0) and y = α′(1, 0).

Now x+ y = (α, 0) + (α′, 0) = (α + α′, 0) = (α + α′, 0). So S is closed under addition. Now
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check if the subspace is closed under scalar multiplication. Let x = α(1, 0). Now take any

real number, β. Note that for any β, βx = (αβ, 0) ∈ S. Therefore S is a subspace.

Example Let X be R2 and let S be the space of all elements (a, b) for which b = 0. S is a

subspace. For any (a, 0) and (a′, 0), α(a, 0)+α′(a′, 0) = (αa, 0)+(α′a′, 0) = (αa+α′a′, 0) ∈ S.

Example The subspaces of R3 are the origin, all lines through the origin, all planes

through the origin, and R3.

A subset S is a subspace if and only if S = span(S). To see this, let S = span(S). Recall

that the span of S is the set of all linear combinations of elements of S. Let w =
∑n

i=1 αixi

and z =
∑n′

i=1 α
′
ix

′
i. w + z is a sum of elements of S weighted by a real number i.e. a

linear combination of elements of S. Therefore w + z ∈ S. It is simple to check that for

any
∑n

i=1 αixi ∈ span(S), β
∑n

i=1 αixi ∈ span(S) = S for any real number β. Therefore

S = span(S) implies that S is a subspace. Now let S be a subspace. Because S is a

subspace, for any x and y in S, (αx+βy) ∈ S. Note that αx+βy is a linear combination of

elements of S. Therefore αx+ βy is in the span of S. Now take any element in the span of

S and assume it is not contained in S. This implies that there is some
∑n

i=1 αixi /∈ S where

xi ∈ S. This implies that S is not closed under addition or scalar multiplication. But this

contradicts the presumption that S is a subspace. Therefore all elements of the span of S

are contained in S. Therefore if S is a subspace then S = span(S).

Linear Independence

An element x ∈ X is linearly dependent on a set S if x ∈ span(S). If x is not linearly

dependent, then x is linearly independent of S. If there exists some element x ∈ S such

that x is linearly independent on the other elements of S, i.e. x ∈ span(S\{x}), then S is a

linearly dependent set. Otherwise S is a linearly independent set.

Example Let S = {(1, 0), (0, 2)}. The element x = (1, 1) is linearly dependent on S:

x = 1 · (1, 0) + 1/2 · (0, 2). The set S is linearly independent: there is no scalar α such that
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α(1, 0) = (0, 2). Similarly there is no scaler β such that β(0, 2) = (1, 0).

Example Let S = {(1, 1), (1, 0), (0, 1)}. The set S is not linearly independent. (1, 1) can

be expressed as a linear combination of (1, 0) and (0, 1).

The following fact is often quite useful in proofs:

Proposition 1 A subset S of a linear space X is linearly independent if and only if 0 =∑n
i=1 αixi for xi ∈ S only for αi = 0 for all i. In other words, a subset S of a linear space

X is linearly independent if and only if 0 cannot be expressed as a linear combination of

elements of S with non-zero coefficients.

Proof :

Suppose S is linearly independent. For contradiction suppose that
∑n

i=1 αixi = 0 where

at least one αi 6= 0. Without loss of generality let α1 be non-zero. Now subtract α1x1 from

both sides and divide by −α1 to get

− 1

α1

n∑
i=2

αixi = x1

This implies that x1 is a linear combination of x2, ..., xn. But this implies S is linearly

dependent, a contradiction. Therefore 0 cannot be expressed as a linear combination of

elements of S with non-zero coefficients.

Now we still need to show that if 0 cannot be expressed as a linear combination of S

with non-zero coefficients, then S is linearly independent. Suppose for contraposition that

S is not linearly independent. Then there is some x ∈ S such that

x =
n∑

n=1

αixi

Subtracting x from both sides yields

0 = (−1)x+
n∑

n=1

αixi
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This is a linear combination of elements in S that sums to 0 with at least one non-zero

coefficient. �

Basis and Dimension

Every subspace S of a linear space is linearly dependent. This is a fundamental characteristic

of a linear space. All elements in a linear space are related to one another in a precise manner

so that any element can be represented by other elements. This distinguishes a linear space

from other arbitrary sets such as the set of all fruits. It is not intuitive that a banana plus

a kiwi is contained in this set or that a strawberry can be represented by scalar multiplying

some other type of fruit.

A basis for a linear space X is a linearly independent subset S that spans X i.e.

span(S) = X. That is, every element of X can be represented by a linear combination

of elements in S. Because S is linearly independent, this representation is unique. A basis

is a minimally spanning set in that it encapsulates the entire vector space uniquely.

When working in Rn, we commonly span the linear space with standard basis vectors

or unit vectors. For R3, the standard basis vectors are (1, 0, 0), (0, 1, 0), (0, 0, 1). For R2, the

standard basis vectors are (1, 0) and (0, 1).

Example Is S = {(1, 0, 1), (2, 0, 0)} a basis for R3? No. There are no scalars a1 and a2

such that a1(1, 0, 1) + a2(2, 0, 0) = (0, 1, 0).

Example Is S = {(1, 1), (1, 2)} a basis for R2? To establish that S is a basis, we need to

show that we can express any arbitrary vector (x, y) as a linear combination a1(1, 1)+a2(1, 2).

Set up a system of equations and solve for a1 and a2 in terms of x and y:

a1 + a2 = x

a1 + a2 = y
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Solving this system yields a1 = 2x− y and a2 = y − x. Therefore S is a basis for R2.

Example Is S = {(1, 1), (1, 2), (u, v)} a basis for R2? We just saw that any element in

R2 can be represented as a linear combination of (1, 1) and (1, 2). Therefore (u, v) can be

represented by a linear combination of (1, 1) and (1, 2) which implies that S is not linearly

independent. Therefore S is not a basis.

A linear space that has a basis with a finite number of elements is finite dimensional.

Otherwise the linear space is called infinite dimensional. In a finite dimensional space,

every basis has the same number of elements. This number is called the dimension of the

linear space.

Example: Rn is an n-dimensional linear space.

Returning to the examples above, note that S = {(1, 0, 1), (2, 0, 0)} is linearly inde-

pendent but is not a basis for R3 because it does not span R3. We also saw that S =

{(1, 1), (1, 2), (u, v)} spans R2 but is not a basis because it is not linearly independent. Fi-

nally, we saw that S = {(1, 1), (1, 2)} is a basis for R2. It is linearly independent and spans

R2.

This illustrates a dual feature of basis. A basis is a maximal linearly independent set in

the sense that the addition of one more element implies that the set is linearly dependent.

Proposition 2 Any set of n + 1 elements in an n-dimensional linear space is linearly de-

pendent.

Proof : Left as exercise. �

A basis is also a minimal spanning set in the sense that removing a single element implies

that the set does not span the linear space X.

Proposition 3 No set of m < n elements in an n-dimensional linear space can span X.

Proof : Suppose S is a subset of X with m < n elements. Assume that S spans X.

Because S spans X, we can find a linearly independent subset of S, S ′ that also spans X.
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Because span(S ′) = X and S ′ is linearly independent, then S ′ is a basis for X. But this

contradicts the fact that X is an n-dimensional basis. Therefore S does not span X. �

The following two facts further highlight this duality between minimally spanning and

maximally linearly independent sets.

Proposition 4 A set of n elements in an n−dimensional linear space X is a basis if and

only if it spans X.

Proposition 5 A set of n elements in an n-dimensional is a basis if and only if it is linearly

independent.

Note the implication of the statement. Any collection of n linearly independent elements

is a basis. That is, any element in a linear space X can be represented as a linear combination

of any n linearly independent elements.

Affine Sets

We saw that subspaces are generalizations of lines and planes passing through the origin.

Another class of subsets of linear spaces are lines and planes that do not go through the origin.

A subset S of a linear space is called an affine set if for all x and y in S, αx+ (1−α)y ∈ S

for all α ∈ R. For a fixed x and y, the set of points αx + (1 − α)y for all α ∈ R is called a

line through x and y. A set is affine if the straight line through any two points remains

entirely within the set.

Convex Sets

A subset S of a linear space X is called a convex set if for every x, y ∈ S,

αx+ (1− α)y ∈ S
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for α ∈ [0, 1]. You should already be familiar with convex sets and examples of such sets

from earlier in the course. Convex sets will play a very important role in optimization theory.

Note that convexity is an algebraic notion while compactness is a geometric concept. Hence

we define compactness in metric spaces and convexity in linear spaces. Here we establish

some properties of convex sets that will be useful.

If S1, S2, ..., Sn are convex subsets of linear spaces X1, X2, ...Xn, their product S1 × S2 ×

...× Sn is a convex subset of the product space X1 ×X2 × ...×Xn.

Example: Let X1 = X2 = R and let S1 = (0, 1) and S2 = (2, 3). Then the open square

(0, 1)× (2, 3) ∈ R2 is a convex subset of R2.

If S is convex, then αS is convex for all α ∈ R.

Example: Let S = (0, 1). The set αS = (0, α) for α > 0. For α < 0, αS = (α, 0).

One additional definition will prove useful later. A convex combination of elements of

a set S ⊆ X is a linear combination of elements with the property that for the scalar weights

αi, (i) αi ∈ [0, 1] and (ii)
∑n

i=1 αi = 1. The convex hull of a set of elements is the set of all

convex combinations of vectors in S i.e.

conv(S) = {
n∑

i=1

|xi ∈ S, αi ∈ [0, 1],
n∑

i=1

αi = 1}

Note that the convex hull of a set of vectors is the smallest convex subset of X that contains

S. An alternative definition of a convex set is that a set is convex if and only if it contains

all convex combinations of its elements.

Exercises

1) Let S be a basis for X so that for every x ∈ X, there exist elements x1, x2, ..., xn ∈ X and

scalars α1, α2, ..., ....αn ∈ R such that

x =
n∑

i=1

αixi
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Prove that αi is unique for all i. (Hint: use Proposition 1).

2) Prove or disprove the following statement: any vector space X has a unique basis.

3) Prove that if X is an n-dimensional linear space, then any set S ⊂ X of n + 1 elements

is linearly dependent. (Hint: use Propositions 1 and 5).
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