
Logic and Proofs

Motivation

Political scientists build and test theories. Our object of study, the political world, is suffi-

ciently complex that we must use comparatively simple theories to identify causal relation-

ships and the mechanisms that produce these relationships. We build our theories using

assumptions. You will discover quickly that even ostensibly simple assumptions often have

non-obvious implications that conflict with our intuition. It is therefore not sufficient to

assert “H1” in a paper and jump straight into your data analysis. You must first prove that

H1 is a plausible hypothesis given a set of assumptions. This lecture teaches you how to go

about doing this.

Statements and Their Truth Values

Let A be a statement. A statement is sentence that can be true or false.

Example Let X be a set and let A be the statement “x ∈ X.” A can be true or false. If

x is an irrational number and X is Z, then A is false. If x is a banana and X is the set of

all types of fruit, then A is true. �

We are often interested in establishing the truth of conditional statements. One

conditional statement we often care about takes the form “A implies B,” denoted A =⇒ B.

This is equivalent to saying that “A is sufficient for B” or “if A then B.”
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Example: Let A be “there was a rainstorm” and let B be “the sidewalks are wet.” Then

A =⇒ B is true: rainstorms are sufficient for wet sidewalks. �

We also often care about statements of the form “A if and only if B” or A ⇐⇒ B. This

is equivalent to saying “A is necessary and sufficient for B.”

Example: Again let A and B refer to a rainstorm and wet sidewalks. While A is sufficient

for B, it is clearly not necessary for B. B can occur without A. For example, B could occur

when A is false if somebody was washing their car or having a water balloon fight nearby. �

Example: Now let A be the event “the nominee was confirmed by the Senate” and B be

the event “the nominee became a Supreme Court justice.” Procedural quibbles aside, the

statement A ⇐⇒ B is true. One cannot become a Supreme court justice without formal

Senate approval and Senate approval makes one a Supreme court justice. �

Finally, we are also interested in conditional statements of the form ¬A =⇒ ¬B where

¬A is read “not A.” This is equivalent to saying “A is necessary for B” or “B only if A.”

Example: Let A be the event “she was nominated by the President” and B be the event

“she became a Supreme court justice.” A is necessary for B: if A is false, B must be false.

Note however that A is not sufficient for B. She must subsequently be approved by the

Senate for B to be true. �

New statements can be constructed from other statements by using the connectives “and”

or “or.” A∨B is read “A or B” and corresponds to the concept of union in set theory. A∧B

is read “A and B” and corresponds to the concept of intersection in set theory.

Example: Let A be the statement “the child is a boy,” B be the statement “the child is

a twin,” and C be the statement “the child is a brother.” Then

A =⇒ C is false

B =⇒ C is false

¬A =⇒ ¬C is true

¬B =⇒ ¬C is false

A ∧B =⇒ C is true
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A ∨B =⇒ C is false

C =⇒ A is true �

Note in the previous example that C =⇒ A and ¬A =⇒ ¬C are both true. This

is no accident but rather an example of the logical equivalence of a conditional statement

with its contrapositive. The proposition “If something is a member of the UN security

council, then it is a state” is logically equivalent to “if something is not a state, then it

is not a member of the UN security council.” A formal proof of this equivalence is beyond

the scope of this course but you are encouraged to come up with your own examples to

verify for yourself that this is true. In practice, proving the contrapositive of a conditional

statement may be easier than proving the statement itself. The logical equivalence of the

two is therefore quite useful.

The statement (A ∧ ¬A) is always false. A statement must be either true or false. This

is a logical principle that we will exploit when we prove statements by contradiction.

There are two types of statements that we typically encounter in mathematics. The first

is a universal statement: “A is always true within a given mathematical system.”

Example: Let A be the statement “x is a real number” and let B be the statement “for

all x, x ≤ |x|.” To prove A =⇒ B, we need to prove the statement for a generic x where

we can only use the properties common to every value of x. To disprove it, we need to find

only a single counterexample. �

The other type of statement we encounter is an existential statement: “There are

conditions under which A is true.”

Example: Let A be the statement “x is a real number” and let B be the statement “∃x

such that x = |x|.” To prove this statement, we must only find one value of x in the reals

such that B is true. �

Which type of statement we are dealing with will inform our method for proving or

disproving a statement.

Mathematics has well-defined procedures for verifying that a given statement is true. We
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will explore four such procedures or “proof strategies.”

Proof by Deduction

The simplest form of proof uses the principle of deduction. We often refer to proofs of this sort

as “direct proofs.” Proof by deduction simply demonstrates how the truth of one statement

implies the truth of another, often by demonstrating that the truth of one statement implies

a series of statements that also must be true which then imply that the statement of interest

is true.

Formally, let’s say we want to prove A =⇒ B. Assume too that we know that there

exists some C such that C =⇒ B. If we can show that A =⇒ C, then we have proven

that A =⇒ B.

Example Claim: x2 − 4x + 9 is always positive. Proof: We know that for any x ∈ R,

x2 ≥ 0. Therefore x2 + y for any y > 0 is always positive. Now note that x2− 4x+ 9 can be

rewritten as (x− 2)2 + 5 by completing the square. Therefore x2− 4x+ 9 is always positive.

�

Example Claim: if f(x) is even, then it is not one-to-one. Proof: Recall that f(x) is even

if f(−x) = f(x) for all x and is one-to-one if for all x, f(x) is unique. If f(x) is even, then

f(x) = f(−x). Thus there exists an a and a b such that f(a) = f(b). Therefore f(x) is not

one-to-one. �

Proof by Contradiction

A second proof strategy exploits the fact that (¬A ∧ A) is logically invalid. Formally, we

prove A by showing that ¬A =⇒ (¬B ∧ B). Note that B can be any statement, not

necessarily one that we are trying to prove or disprove.

Example: Claim:
√

2 is irrational. Proof: Suppose that
√

2 is rational. Then there exist

two integers, a and b such that a
b

=
√

2. Let the fraction be fully reduced. This implies that
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a and b are not both even (why?). Our assumption implies that a2 = 2b2. We know that a2

must be even which implies that a is even. Therefore b must be odd. Since a is even, there

must be some integer c such that a = 2c. This yields (2c)2 = 2b2 so 4c2 = 2b2 and hence

b2 = 2c2. This implies that b2 is even which implies that b is also even. But we just deduced

that b is odd. Therefore we have a contradiction: b is both even and odd. Therefore our

presumption that
√

2 is rational must be false. �

Contradiction is often a good strategy for proving statements of the form “for all x, A is

true of x.” The setup for contradiction involves assuming that “there exists an x such that

A is not true of x.” This gives us a specific x for which A is false which is often enough to

produce a contradiction.

Example: Claim: For every x ∈ [0, π/2], sinx + cosx ≥ 1. Proof: suppose there exists

an x ∈ [0, π/2] for which sin x + cosx < 1. Since x ∈ [0, π/2], neither sinx nor cosx

is negative so 0 ≤ sinx + cosx < 1. Thus 02 ≤ (sinx + cosx)2 < 12 which gives 02 ≤

sin2 x+ 2 sinx cosx+ cos2 x2 < 12. Since sin2 x+ cos2 x = 1, we have 0 ≤ 1 + 2 sin x cosx < 1

so 1 + 2 sin x cosx < 1. Subtracting 1 from both sides gives 2 sinx cosx < 0. But this

contradicts the fact that neither sinx nor cos x is negative. �

Example: Claim: There exists an integer n > 0 such that n2 + n + 17 is not a prime

number. Proof: Assume that for all integers n > 0, n2 + n + 17 is a prime number. This

implies that n+1+17/n is not an integer for all n (the sum is greater than 1 for all integers).

This therefore implies that 17/n is not an integer for all n which implies that 1 is not an

integer which is false. �.

Of course, we typically are interested in proving conditional statements in political sci-

ence. To prove A =⇒ B, we assume ¬(A =⇒ B). That is, we assume A is true while

B is false (why?). Our setup now is to assume (A ∧ ¬B) and show that (C ∧ ¬C) for some

statement C.

Example: Claim: Assume a ∈ Z. If a2 is even, then a is even. Proof: Assume a is

odd and a2 is even. Since a is odd, there exists an integer c for which a = 2c + 1. Then
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a2 = 2(2c2 + 2c) + 1 which implies that a2 is odd, a contradiction. Therefore a must be even.

�

Proof by Induction

Some statements describe a property of an index number n and may be written as A(n).

One way to prove that A(n) is true for all natural numbers n is to demonstrate that A(1) is

true and that if A(n) is true then A(n+ 1) must be true.

The logic is that if you want to show that somebody can climb the stairs to the nth floor

of a building, you only need to show that you can climb to the first floor and then show that

you know how to climb the stairs from any floor to the next floor.

Example: Claim: 1 + 2 + 3 + ...+ n = n(n+1)
2

. Proof: First show that the equality holds

for n = 1. 1 = 1(1 + 1)/2 = 1. Now assume that the claim is true for n = k. This is called

the inductive hypothesis. That is, we assume 1 + 2 + ...+ k = k(k+1)
2

. Now we just need show

that the claim holds for n = k + 1:

1 + 2 + ...+ k + (k + 1) =
(k + 1)((k + 1) + 1)

2

Start with the left side of the equation. By the inductive hypothesis,

1 + 2 + ...+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 2)(k + 1)

2

=
(k + 1)(k + 2)

2

=
(k + 1)((k + 1) + 1)

2
�
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The algorithm for proof by induction is simple. First prove the statement for a base

case. Then assume the statement is true for some n. Then show that given the inductive

hypothesis (step 2), show that the statement holds for n+ 1. While the algorithm is simple,

intuition for why inductive proofs are valid may take a while to understand.

Proof by Contraposition

We saw earlier that A =⇒ B is equivalent to ¬B =⇒ ¬A. Proof by contraposition

exploits this fact to prove A =⇒ B. Often A =⇒ B is too hard to prove by deduction,

contradiction, or induction while ¬B =⇒ ¬A is relatively simple to prove by one of these

techniques.

Example: Claim: if 7m is an odd integer, then m is an odd integer m > 1. Proof: We

will prove that m is even implies 7m is even. If m is even, then m = 2k for some integer

k =⇒ 7m = 7(2k) =⇒ 7m = 2(7k) =⇒ 7m = 2n for some integer n =⇒ 7m is even. �

If and Only If

So far we have been focusing on proving simple statements and conditional statements of

the form A =⇒ B. To prove a conditional statement of the form A ⇐⇒ B, we have to

prove A =⇒ B and B =⇒ A. We can use different proof techniques to prove both sides

of the statement.

Example: The function dxe is referred to as the “ceiling function.” For any x ∈ R, the

function returns the smallest integer greater than x. The “floor function,” bxc, returns the

largest integer smaller than x. Claim: For any x ∈ R, bxc = dxe if and only if x ∈ Z. Proof:

First we prove that bxc = dxe implies that x is an integer. Assume bxc = dxe. Note that

bxc ≤ dxe. Since by assumption bxc = dxe, it follows that x = bxc. Since bxc is an integer,

x must be an integer as well. Now we prove that if x is an integer, then bxc = dxe. If x is

an integer, then x = bxc and x = dxe. Therefore bxc = dxe. �
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Exercises

1) Prove that an integer is even if and only if its square is even.

2) Let A, B, and C be any sets. Prove that

A\(B ∪ C) = (A\B) ∩ (A\C)

(Hint: show equality by proving that both sides of the equality are subsets of each other)

3) Every March in the United States, college basketball teams compete in a 64-team single-

elimination tournament to determine the national champion. Assume for simplicity that

rather than 64 teams, there are only 8 teams in the tournament. Let X denote the set of all

teams in the tournament. Matchups in the first round are determined as follows. Each team

is assigned a number 1 though 8. Refer to such a permutation as a seeding and denote an

individual seeding as s. Let S represent the set of all seedings, i.e. the set of all ways that

the 8 teams can be assigned a number 1 through 8. In the first round the team assigned

number 1 plays team number 8, team 2 plays number 7, team 3 plays team number 6, and

team 4 plays team number 5. In the second round, matchups are determined similarly. The

lowest seeded team plays the highest seeded team and the second highest seed plays the

second lowest seed. The two remaining teams after round two play in a championship game

to decide the tournament. A tournament winner is a team that wins three games in a row

and thus wins the championship. Note that for a given seeding, the tournament winner is

unique.

Assume that the result of any individual matchup is deterministic. That is, for any x and

x′ in X, either x � x′ or x′ � x where � connotes “defeats.” Assume that � is exogenous

i.e. it is predetermined which team beats another for all matchups (there is no randomness).

Define a Condorcet winner as a team x ∈ X such that for all x′ 6= x, x � x′.

Prove or disprove the following three statements:

i) If x is a Condorcet winner, then for all seedings s ∈ S, x is the tournament winner.
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ii) If x is a tournament winner for some s ∈ S, then x is a Condorcet winner.

iii) If x is a tournament winner for all s ∈ S, then x is a Condorcet winner.
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