
Metric Spaces

Motivation

In a metric space, attention is focused on the spatial relationships between elements. In

the previous lecture, we began building the framework for social science theory by thinking

about how elements in a set are ordinally ranked. This is clearly a necessary mathematical

concept for building theories occupied by actors with preferences. Distance is a second notion

that we will find useful in theory building. For example, we often talk about polarization in

political science. We need a concept of distance to analyze how far apart the ideal policy

of two legislators or parties are. An important large class of models in political science are

called “spatial models” that build on this intuition and formalize utility as a decreasing

function of the distance between an agent’s ideal outcome and the realized outcome of a

political process. This lecture introduces the mathematical concepts necessary to formalize

and apply the concept of distance in political science research.

Definition

A metric space is a set X on which is defined a measure of distance between the elements.

To conform with our conventional notion of distance, the distance measure must satisfy

certain properties. The distance should be positive. It should be symmetric: the distance

from Princeton to Cambridge should equal the distance between Cambridge and Princeton.
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Last, the shortest route between two distinct elements should be the direct route. A distance

measure with these properties is called a “metric.”

Formally, a metric on a set X is a measure that associates with every pair of points

x, y ∈ X a real number d(x, y) satisfying the following properties:

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x) (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

A metric space is a pair (X, d) where X is a set and d is a metric. Elements of a metric

space are usually called points.

Example: The most familiar metric space is (R, d) where d(x, y) = |x− y|.

Example: Consider how we might define the distance between policy bundles represented

as points in Rn. Given a two dimensional policy space (social and economic policy for

example), one way to measure the distance between two policy pairs x and y is to consider

the difference in each dimension of policy and sum them. That is

d1(x, y) = |x1 − y1|+ |x2 − y2|

An alternative would be to square the differences and take their square root:

d2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

We may also consider that the policy whose position has changed the most should determine

the distance between policy pairs:

d∞(x, y) = max{|x1 − y1|, |x2 − y2|}

The metric d2 is common and referred to as the Euclidean metric which generalizes the
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usual notion of distance in two and three dimensional space. Remember the Pythagorean

theorem? The metric d∞ is known as the “supremum metric.” �

In practice we will often use objects called “metric subspaces.” If X is a metric space and

Y is a nonempty subset of X, we can view Y as a metric space in its own right using the

distance function induced by d on Y , d|Y×Y . We say that (Y, d|Y×Y ) is a metric subspace

of X. For example, [0, 1] can be through of as a metric subspace of R where the distance

between x, y ∈ [0, 1] is calculated by viewing x and y as points in R : d1(x, y) = |x− y|. We

may of course also think of [0, 1] as a metric subspace of R2. Formally, we identify [0, 1] with

[0, 1]× {u} for any u ∈ R. This renders the distance between x and y equal again to |x− y|

e.g. d2((x, u), (y, u)) = |x− y|.

Open and Closed Sets

We want to have a concept of proximity when we use metric spaces. The set of points in

close proximity to a given point x0 is called a “ball” about x0. Formally, an open ball about

x0 with radius r is the set of points

Br(x0) = {x ∈ X : d(x, x0) < r}

Open balls are not necessarily spherical: their shape depends on the metric.

A set S ⊆ X is called a neighborhood of x0 if S contains an open ball about x0

(∃Bε(x0) ⊂ S for some ε > 0). A point x0 ∈ S is called an interior point of S if S contains

an epsilon ball about x0. An open ball is a symmetrical neighborhood but the concept of

neighborhood does not require symmetry. The set of interior points of a set S is called the

interior of S, denoted int S. A set S is open if S = int S. A point x0 ∈ X is called a

boundary point of S ⊆ X if every neighborhood of x0 contains points of S and Sc. The

boundary b(S) is the set of all boundary points of S. The closure S of S is the union of S

with its boundary, i.e. S = S ∪ b(S). A set is closed if S = S.
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Example: The boundary of the unit ball B1(0) is the set S1(0) = {x ∈ X : d(x, 0) = 1}.

This is called the “unit sphere.” In R2 the unit sphere is S1(0) = {x ∈ R2 : x21 + x22 = 1},

which is the boundary of the set B1(0) = {x ∈ R2 : x21 + x22 < 1}. �

Convergence

A sequence in a metric spaceX is a list of particular elements x1, x2, ... ofX. Let (xn) denote

a sequence. We often encounter sequences in political science. A sequence of observations of

some political variable such as presidential approval is a “time series.” The moves in a game

theoretic model are also a sequence. In your quantitative analysis courses, you will often

analyze the asymptotic properties of estimators by appealing to properties of a sequence of

estimates of a population parameter.

A sequence (xn) converges to x if for all r > 0 there exists an N such that xn ∈ Br(x)

for all n ≥ N . Equivalently, (xn) converges to x if for all ε > 0, there exists some N such

that for all n ≥ N , d(xn, x) < ε. We often denote convergence by xn → x or lim xn = x.

Example: Let (xn) = 3n+1
7n−4 be a sequence in (R, d1). This sequence converges to 3/7.

To see this, let ε > 0 and let N = 19
49ε

+ 4
7
. Then n > N implies n > 19

49ε
+ 4

7
, hence

19
7(7n−4) = 3n+1

7n−4 −
3
7
< ε. Therefore for n ≥ N , |3n+1

7n−4 −
3
7
| < ε. �

If a sequence converges, it has a unique limit. To see this, assume xn → x and xn → y.

By the triangle equality, d(x, y) ≤ d(x, xn)+d(xn, y) for all n. d(x, xn)→ 0 and d(xn, y)→ 0,

d(x, y)→ 0. This implies x = y.

A sequence is bounded if there exists some L such that d(xn, y) ≤ L for all n where

L ∈ R and y is a point in X. Every convergent sequence is bounded. Proving this is left as

an exercise.

Sequences allow an alternative characterization of closed sets from the one given above.

Proposition 1 A set S in a metric space X is closed if and only if every sequence in S that

converges in X converges to a point in S.
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Proof :

First we prove that closed implies that the limit of a convergent sequence is in S by

contradiction. Let S be a closed subset of X and take (xn) a sequence in S with xn → x for

some x ∈ X. If x ∈ X\S then we can find an r > 0 such that Br(x) ⊆ X\S because X\S

is open in X. But since d(xn, x) → 0, there must exist an N such that xN ∈ Br(x). This

contradicts the assertion that all terms of the sequence (xm) lie in S.

Now we prove that convergence to a point in S implies that S is closed by contraposition.

Suppose S is not closed in X. Then X\S is not open. Therefore we can find an x ∈ X\S

such that every open ball around x intersects S. Thus for any n = 1, 2, ..., there is an

xn ∈ B 1
n
(x) ∩ S. But then (xn) ∈ S and lim xn = x yet x /∈ S. Thus were S is not closed,

there would exist at least one sequence in S that converges to a point outside of S. �

We will also occasionally use subsequences to prove properties of sequences. A sub-

sequence of (xn) is a sequence (yk) where yk = xnk where n1 < n2 < ... is an increasing

sequence of indices. We often denote a subsequence of (xn) with (xnk).

Example: Let (xn) = 1, 1/2, 1/3, 1/4, 1/5, ..... The sequence (yk) = 1, 1/3, 1/5, ... is a

subsequence of (xn) where n1 = 1, n2 = 3, n3 = 5, etc. �

Compactness

Compactness is one of the most fundamental concepts in real analysis and plays an important

role in optimization theory. You’ve probably encountered a definition of compact that is

loosely something like “a set that is closed and bounded.” This is true in some metric spaces

but is not a proper definition of compact. We need an additional definition to properly define

compactness.

Let X be a metric space and S ⊆ X. A class O of subsets of X is said to cover S if

S ⊆ ∪O. If all members of such a class O are open in X, then we say that O is an open

cover. A subset of O that also covers S is called a subcover. Now we are ready to define
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compactness.

A metric space X is compact if every open cover of X has a finite subset that also covers

X.

Example: Consider the interval (0, 1) (a subset of R) and the collection O = {(1
i
, 1) :

i = 1, 2, ...}. Note that (0, 1) = (1
2
, 1) ∪ (1

3
, 1) ∪ .... Therefore O is an open cover of (0, 1).

However, O does not have a finite subset that covers O. Therefore (0, 1) is not compact. �

Example: [0, 1] is a compact subset of R. To see this, suppose there exists an open cover

O of [0, 1] such that no finite subset of O covers [0, 1]. This implies that either [0, 1
2
] or [1

2
, 1]

is not covered by any finite subset of O. Pick any one of the intervals with this property

and call it [a1, b1]. Then either [a1,
1
2
(a1 + b1)] or [1

2
(b1,+a1), b1] is not covered by any finite

subset of O. Pick any one of these intervals with this property and call it [a2, b2]. Continue

this inductively to obtain two sequences, (am) and (bm) in [0, 1] such that

(i) am ≤ am+1 < bm+1 ≤ bm,

(ii) bm − am = 1
2m

,

(iii) [am, bm] is not covered by any finite subset of O,

for each m = 1, 2, .... Properties (i) and (ii) allow us to find a real number c with {c} =

∩∞[ai, bi]. Now take any O ∈ O which contains c. Since O is open and lim am = lim bm = c,

we must have [am, bm] ⊂ O for a large enough m. But this contradicts condition (iii). We

conclude that [0, 1] is compact. �

Of course, we are familiar with a simpler version of compactness. This is primarily due to

the fact that we typically work in Rn with a Euclidean metric. The Heine-Borel Theorem

is to thank for this result. The theorem establishes that the following two statements are

equivalent for a subset S of (Rn, d2):

1. S is closed and bounded

2. S is compact, i.e. every open cover of S has a finite subcover

In general, compactness implies closed and bounded but the reverse is not guaranteed to

hold.
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An additional pair of facts will help us find other compact sets. First, any closed subset

of a compact metric space is compact. Second, the product of two compact metric spaces

is compact (Tychonoff’s theorem). This latter fact will be very useful in game theory when

we want to determine whether a strategy space S = S1 × S2 × ... × Sn is compact. If each

player i = 1, 2, ...n has a compact strategy space, the strategy space is compact. A compact

strategy space will be a key component of the fixed point theorems we use to prove the

existence of a Nash equilibrium.

Cauchy Sequences

A sequence (xn) in a metric space X is called a Cauchy sequence if for any ε > 0, there

exists an N ∈ R such that d(xk, xl) < ε for all k, l ≥ N .

Example: (xn) = 1/2n is a Cauchy sequence in (R, d1). Take ε > 0 and choose N so large

that 2−N < ε. Then if n,m > N , we have

|xn − xm| = |1/2n − 1/2m| ≤ 1/2n + 1/2m ≤ 1/2N + 1/2N < ε �

Cauchy sequences have several properties:

1) If (xn) is convergent, then it is Cauchy.

2) If (xn) is Cauchy, then (xn) is bounded but need not converge in X.

3) If (xn) is Cauchy and has a subsequence that converges in X, then (xn) converges in

X as well.

Proving Property 1 and the first part of Property 2 are left as exercises. To see the second

part of Property 2, consider the sequence (xn) = (1, 1/2, 1/3, ...) in (0, 1]. This sequence is

Cauchy but does not converge in this space (while it does in [0, 1] or R). For Property 3, say

that (xn) is Cauchy and has a convergent subsequence (xnk)→ x. This implies

d(xn, x) ≤ d(xn, xnk) + d(xnk , x)→ 0
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as n, k →∞.

These properties can be quite useful. Say we are given a sequence (xn) in some metric

space and need to check if the sequence converges. Doing this requires guessing a limit x

and then showing that the sequence actually converges to x. This is not always efficient. An

alternative approach is simply to check whether the sequence is Cauchy. If not Cauchy, we

conclude by Property 2 that the sequence is not convergent. If it is Cauchy, however, we still

can’t say whether or not it converges because of Property 2, illustrated in the counterexample

above. If we knew something about the metric space or the metric space it is a subspace of,

may learn something. For example, what if we knew that in our metric space, all Cauchy

sequences converged? It turns out that most of the metric spaces we will use in fact have

this property!

Completeness

Compactness generalizes the concept of finiteness and is one of two fundamental properties

of metric spaces. The other property, completeness, generalizes the idea of richness. An

incomplete space lacks certain necessary elements.

A complete metric space is defined as a metric space X in which every Cauchy se-

quence in X converges to a point in X.

Example: We saw above that (0, 1] with the d1 metric is not complete. �

It is natural to think about a relationship between completeness and closedness.

Proposition 2 Let X be a metric space and Y a metric subspace of X. If Y is complete,

then it is closed in X. Conversely, if Y is closed in X and X is complete, then Y is complete.

Proof : Let Y be complete and take any (xn) ∈ Y that converges in X. Because (xn)

converges, it is Cauchy and thus lim xn ∈ Y . We saw above that if a sequence in Y that

converges in X converges to a point in Y , then Y is closed.
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Now assume X is complete and Y is closed in X. If (xn) is a Cauchy sequence in Y , the

by the completeness of X, it must converge in X. But since Y is closed, limxn must be an

element of Y . Therefore Y is complete. �

A corollary of this is that a metric subspace of a complete metric space is complete if

and only if it is closed in X.

One final fact about completeness will be useful: every compact metric space is complete.

Intro to Fixed Point Theory

Why do we care about completeness? It turns out that certain types of mappings on a

complete metric space possess a very desirable “fixed point” property. A self-map is a

function, f(·), whose domain and codomain are identical. A fixed point of a self-map is a

point that satisfies the property f(x) = x. Fixed points will be extremely useful in political

science theory for ensuring that a model has an equilibrium.

One type of self-map is called a contraction. Let X be a metric space. A self-map f on

X is a contraction if there exists a real number K ∈ (0, 1) such that

d(f(x), f(y)) ≤ Kd(x, y)

for all x, y ∈ X.

Example: Let f : R → R be defined as f(x) = x
2
. To verify that this is a contraction,

consider two arbitrary points, x, y ∈ R. Also note that in general, a|b| ≤ |ab|. We need to

show that d(f(x), f(y)) ≤ Kd(x, y) for some K ∈ (0, 1). d(f(x), f(y)) = |f(x) − f(y)| =

|x
2
− y

2
| = |1

2
(x− y)| ≤ 1

2
|x− y| = 1

2
d(x, y). Since 1

2
∈ (0, 1), f is indeed a contraction. �

When a contraction is defined on a complete metric space, a contraction must map a

point to itself. In other words, it must have a fixed point. In fact, we can show that it must

have a unique fixed point!

Theorem 1 (Contraction Mapping) if X is a complete metric space and f is a contrac-
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tion defined on X, then there exists a unique x∗ ∈ X such that f(x∗) = x∗.

Proof : Let (X, d) be a complete metric space and let f : X → X be a contraction. To

show the existence of a fixed point for f , pick any x ∈ X and define (xn) ∈ X∞ such that

xn+1 = f(xn) for n = 0, 1, ... This is a Cauchy sequence: let K be the contraction coefficient

of f and notice that d(xn+1, xn) ≤ Knd(x1, x0) for all n = 1, 2, ... To see this, note that by

construction, d(xn+1, xn+2) ≤ Kd(xn, xn+1) ≤ K2d(xn−1, xn) ≤ ... ≤ Knd(x0, x1). Thus for

any k > l + 1,

d(xk, xl) ≤ d(xk, xk−1) + ...+ d(xl+1, xl)

≤ (Kk−1 + ...+K l)d(x1, x0)

=
K l(1−Kk−l)

1−K
d(x1, x0)

Therefore d(xk, xl) < Kl

1−Kd(x1, x0).

This implies that (xn) is a Cauchy sequence. Since X is complete, our Cauchy sequence

(xn) must converge to some x∗ ∈ X.

Then for any ε > 0, there must exists some N such that d(x∗, xn) < ε
2

for all n =

N,N + 1, ...,

and therefore

d(f(x∗), x∗) ≤ d(f(x∗), xn+1) + d(xn+1, x∗)

= d(f(x∗), f(xn)) + d(xn+1, x∗)

≤ Kd(x∗, xn) + d(xn+1, x∗)

<
ε

2
+
ε

2

Since ε > 0 is arbitrary, we must have d(f(x∗), x∗) = 0 which is possible only if f(x∗) = x∗.

To prove uniqueness, note that if x ∈ X was another fixed point, we would have d(x, x∗) =

d(f(x), f(x∗)) ≤ Kd(x, x∗) which is possible only if x = x∗. �
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The Contraction Mapping Theorem is also commonly referred to as the Banach Fixed

Point Theorem.

Exercises

1) Show that d∞(x, y) = maxni=1 |xi − yi| is a metric for Rn.

2) Consider the metric space (R, d1) and the sequence ( 1
n2 ). Prove that lim 1

n2 = 0.

3) Prove that every convergent sequence in a metric space is bounded.

4) Prove that every convergent sequence in a metric space is Cauchy.

5) Prove that every Cauchy sequence is bounded.

6) The Bolzano-Weierstrass theorem states that every bounded sequence of real numbers has

a convergent subsequence. Use the theorem to prove that R is complete.
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