
Monotone, Linear, and Convex Functions

Motivation

We saw in the last lecture that continuous functions preserve the geometric structure of the

sets they associate. In this lecture, we will see how monotone functions preserve the order

structure of their domains and how linear functions preserve the algebraic structure of the

spaces they link. We also introduce convex and concave functions which will be particularly

useful when we solve optimization problems.

Monotone Functions

A function between ordered sets X and Y is called monotone if it respects the order of X

and Y . f is increasing if it preserves the ordering so that x2 %X x1 =⇒ f(x2) %Y f(x1)

where %i is the order on set i. A function is strictly increasing if the order relation is

strict. Decreasing and strictly decreasing functions are defined analogously. A function f is

monotone if it is either increasing or decreasing.

In practice we will often be using functions that map from R into R where each set is

ordered with ≥.

Example: The function ln(x) is a monotone function that we will often encounter. For

any x2 ≥ x1 in R+, ln(x2) ≥ ln(x1) in R. �

We also use functions that map from Rn into R. A function that maps into R is called a

functional. The utility functions we use in our theories are examples of functionals.
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Example: A Cobb-Douglas utility function, f(x, y) = xayb for a, b > 0, is monotone on

the domain (R2
+,≥). (x2, y2) ≥ (x1, y1) implies x2 ≥ x1 and y2 ≥ y1. Therefore f(x2, y2) ≥

f(x1, y1). �

Given any functional f on X and a strictly increasing functional g : R→ R, their compo-

sition g ◦ f : X → R is called a monotonic transformation. A monotonic transformation

preserves the ordering implied by f .

Example: Frequently it is easier to work with a log transformation of a function. The

log of the Cobb-Douglass function from the previous example is ln f(x) = a ln(x) + b ln(y).

This is a monotonic transformation. �

Note that monotonicity restricts the behavior of a function on comparable elements. It

places no restrictions on the action of the function with respect to non-comparable elements.

Linear Functions

A function f : X → Y between two linear spaces is linear if it preserves the linearity of the

sets X and Y . That is, for all x1, x2 ∈ X and α ∈ R, we have

additivity: f(x1 + x2) = f(x1) + f(x2)

homogeneity: f(αx1) = αf(x1)

Example: The function f : R3 → R2 defined by f(x1, x2, x3) = (x1, x2, 0) is a linear

function. Additivity: f(x1+y1, x2+y2, x3+y3) = (x1+y1, x2+y2, 0) = (x1, x2, 0)+(y1, y2, 0).

Homogeneity: f(αx1, αx2, αx3) = (αx1, αx2, 0) = α(x1, x2, 0). �

Example: The function ln(x) is not a linear mapping. ln(1) = 0, ln(2) ≈ .7, ln(3) ≈ 1.1.

�

Example: Consider the function f(x) = 2x + 3. Most of us grew up referring to this

as a linear function. It turns out that f is not in fact linear. f(x + y) = 2(x + y) + 3 =

2x + 2y + 3 6= 2x + 2y + 6 = f(x) + f(y). f(αx) = 2αx + 3 6= 2αx + 3α = αf(x). Rather,

f is an example of an affine function which relate to linear functions in the same way as
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subspaces relate to affine sets. Affine functions preserve affine sets (lines and planes). �

Any m× n matrix A = (aij) defines a linear mapping from Rn to Rm defined by

f(x) =



∑n
j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 amjxj


In the quantitative sequence, the linearity of the expectation operator will become very

familiar to you. This is a particular case of a generally desirable property of linear functions.

By removing scalars from the arguments of functions and evaluating additive components of

the arguments separately, complicated expressions can be made much more tractable.

Properties of Linear Functions

(1) Every linear function f : X → Y maps the zero vector in X into the zero vector in Y .

(2) Every composition of linear functions is linear.

(3) A linear function (such as a matrix) that has an inverse f−1 : Y → X is said to be

nonsingular. The inverse of a nonsingular linear function is also linear.

Bilinear Functions and Inner Product Spaces

A function f : X × Y → Z between linear spaces X, Y , and Z is bilinear if it is linear in

each factor separately:

f(x1 + x2, y) = f(x1, y) + f(x2, y)

f(x, y1 + y2) = f(x, y1) + f(x, y2)

f(αx, y) = αf(x, y) = f(x, αy) for all α ∈ R

Bilinear functions are one of the most common types of nonlinear functions and are

often used to represent objective functions. They are also encountered in optimization since
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the second derivative of any smooth function is bilinear. We typically encounter bilinear

functionals.

Example: The functional f(x, y) = xy is bilinear since f(x1 + x2, y) = (x1 + x2)y =

x1y + x2y = f(x1, y) + f(x2, y) and f(αx, y) = (αx)y = αxy = αf(x, y). �

Example: Any m× n matrix A = (aij) defines a bilinear functional on Rm × Rn by

f(x, y) =
m∑
i=1

n∑
j=1

aijxiyj

In the quantitative sequence you will often have an n × n weighting matrix and use the

functional f(x, x). �

A bilinear functional f on X ×X is called

symmetric if f(x, y) = f(y, x) for all x, y ∈ X

positive semidefinite if f(x, x) ≥ 0 for every x ∈ X

positive definite if f(x, x) > 0 for every x ∈ X

A symmetric, positive definite bilinear functional on a linear space X is called an inner

product, denoted xTy. A linear space equipped with an inner product is called an inner

product space. Every inner product defines a norm given by ||x|| =
√
xTx. Therefore every

inner product space is a normed linear space. We spend most of our time in the Euclidean

space Rn with the inner product xTy =
∑n

i=1 xiyi. An inner product space mimics the

geometry of Euclidean space and is the most structured of linear spaces. We will revisit

inner product spaces in the next lecture and see how useful these spaces are for analyzing

data. While all inner product spaces are normed linear spaces, not all normed linear spaces

are inner product spaces.

In any inner product space, the Cauchy-Schwarz inequality holds:

|xTy| ≤ ||x|| ||y||

Several notations are used to express inner product. Two common alternatives to xTy
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are x · y and 〈x, y〉.

Linear Operators

A linear operator is a linear function from a set to itself. Every linear operator on a

finite-dimensional space can be represented by a square matrix. We often care about fixed

points in political science theory. It turns out that every linear operator f : X → X has at

least one fixed point.

The set of all linear operators on a given space X is denoted L(X,X). If X is finite-

dimensional, there is a unique functional det called the determinant on L(X,X) with the

following properties:

det(f ◦ g) = det(f) det(g)

det(I) = 1 where I is the identity matrix

det(f) = 0 if and only if f is singular

for all g, f ∈ L(X,X).

The last property will be particularly useful when we want to check whether an operator

is nonsingular. Note that det itself is not a linear functional. You should already be familiar

with calculating determinants in low dimensions, typically when inverting matrices.

Another application of linear operators that we will use frequently in optimization are

quadratic forms. Let X be a Euclidean space. A functional Q : X → R is called a quadratic

form if there exists a symmetric linear operator f : X → X such that Q(x) = xTf(x) for

every x ∈ X. Quadratic forms are among the simplest nonlinear functionals we encounter.

Example: The nonlinear function Q(x, y) = x2 + 4xy+y2 is a quadratic form on R2. The

matrix

A =

1 2

2 1
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defines a symmetric linear operator on R2:

f(x, y) =

1 2

2 1


x
y

 =

x+ 2y

2x+ y



[x, y]

x+ 2y

2x+ y

 = x2 + 4xy + y2 = Q(x, y) �

Any n × n symmetric matrix, A, defines a quadratic form Q(x) = xTAx. A symmetric

matrix A is called

positive definite if xTAx > 0 for all x 6= 0 ∈ X

positive semidefinite if xTAx ≥ 0 for all x 6= 0 ∈ X

negative definite if xTAx < 0 for all x 6= 0 ∈ X

negative semidefinite if xTAx ≤ 0 for all x 6= 0 ∈ X

All definite matrices are nonsingular. Recall that if an interior solution to an optimization

problem is a local maximum, the Hessian matrix with respect to choice variables is negative

definite. For two decision variables, this implies that the second derivative with respect to

each choice variable is negative. That is, the main diagonal of H is negative.

Convex Functions

For many purposes in political science, linearity is too restrictive of an assumption. Convex

functions generalize some of the properties of linear functions while providing more suitable

functional forms.

A real-valued function f defined on a convex set of a linear space X is convex if for

every x1, x2 ∈ S,

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

A function is strictly convex if the inequality is strict and concave if the inequality is
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reversed.

The following facts will prove useful:

(1) if f is an invertible function, then f is concave if and only if f−1 is convex.

(2) if f and g are convex, f + g is convex

(3) if f is convex, then αf is convex for every α ≥ 0

(4) logarithmic transformations preserve concavity since ln is concave and increasing

For a twice differentiable function on an open interval S ⊆ R, f : S → R is convex if

and only if f ′′(x) ≥ 0 for every x ∈ S and concave if and only if f ′′(x) ≤ 0 for every x ∈ S.

Strict inequality implies strict convexity or concavity.

In the next lecture, we will see how to differentiate functions defined on higher dimensional

domains. To preview this, the generalization of the second derivative on a one dimensional

domain is given by a symmetric square matrix that is referred to as a Hessian, Hf . In

higher dimensions, we would like to exploit the sign of the derivative to identify whether a

function is convex or concave at some point. But how should we think of the “sign” of a

matrix? The concept of definiteness that we saw above will generalize the idea of positive

and negative into higher dimensions. f : Rn → Rm is convex at x iff and only if Hf (x) is

positive semidefinite and concave iff Hf (x) is negative semidefinite.

A functional f on a convex set S of a linear space is quasiconvex if

f(αx1 + (1− α)x2) ≤ max {f(x1), f(x2)}
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for every x1, x2 ∈ S and α ∈ [0, 1]. A function is strictly quasiconvex if the inequality is

strict. A function is quasiconcave if

f(αx1 + (1− α)x2) ≥ min {f(x1), f(x2)}

for every x1, x2 ∈ S and α ∈ [0, 1]. We often encounter quasiconcave functions rather than

quasiconvex functions.

Geometrically a function is quasiconcave if the function along a line joining any two

points in the domain lies above at least one of the endpoints. Any monotone function is

both quasiconcave and quasiconvex. Each of the following functions is quasiconcave.

Exercises

1) Let f1, f2, ..., fn be convex functions and α1, α2, ...αn ≥ 0. Prove that f(x) = α1f1(x) +

...+ αnfn(x) is convex. Is α1f1 − α2f2 convex? Prove your answer.

2) Prove the Cauchy-Schwarz inequality for Rn.

3) Prove the following: L : Rl → R is a continuous, linear functional if and only if there

exists a y ∈ Rl such that for all x ∈ Rl, L(x) = yTx.
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