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Optimization is at the core of many formal and quantitative problems
in political science. How many yard signs should a mayoral candidate
buy in order to maximize her probability of winning a local election?
Who should an autocrat include in his ruling coalition in order to
maximize rents, while ensuring he remains firmly in power? Game
theoretic and decision theoretic models assume that political actors are
goal oriented and make choices in order to realize those goals, subject
to strategic and resource constraints. Choices are optimal given these
constraints. Quantitative models of politics seek to fit models to data
– choosing parameters in order to minimize the distance between the
model and the data or to maximize the likelihood of data. We’ve now
built up enough technical background to begin tackling these problems
more rigorously. We’ll tackle optimization problems of constrained and
unconstrained varieties today.

Introduction

We’ll focus on maximization problems in the exposition in order to
fix ideas. The arguments presented here generalize easily to mini-
mization problems, which we will encounter in quantitative appli-
cations.1 Maxmization problems generically take the following form 1 Equation 1 can be converted into a

minimization problem by maximizing
− f (x, θ),

min
x∈G(θ)

f (x, θ) = max
x∈G(θ)

− f (x, θ)
max

x∈G(θ)
f (x, θ) (1)

We call f (x, θ) the objective function and G(θ) the feasible set. We can
read the problem as “choose x in order to maximize the function f
over the feasible set G,” where both the function and the feasible
set depend on some vector of parameters θ. The set of maximizers is
written

x? ∈ arg max
x∈G(θ)

f (x, θ)

A first order concern is whether or not it is possible to find such an
x?.2 These problems become particularly acute when we work with 2 Can you think of a function and

domain for which no x? exists?general objective functions with sparse assumptions about their form.
We’ll sidestep these problems for the moment by working with the
smooth functions we covered yesterday.

A global optimum is an x? that is “better” than any other x in the
constraint set G(θ), f (x?; θ) ≥ f (x; θ) for all x ∈ G(θ). A local
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optimum is a x? that is better than all x in some neighborhood S ⊂
G(θ). Formally, f (x?; θ) ≥ f (x; θ) for all x ∈ S.

Example: Consider a spatial model of policy choice in which some
decision maker with ideal point x̃ chooses some policy x ∈ R in
order to maximize

u(x) = −(x̃− x)2

What is the optimal policy choice?

Unconstrained Optimization

We start with unconstrained maximization problems, where the
decision maker can choose any x ∈ X.3 3 Equivalently, G(θ) = X.

A local optimum is a point x ∈ G(θ) that cannot be improved upon
through small changes in x. We want to find an x? ∈ S such that
f (x?) ≥ f (x) for all x ∈ S. When f is smooth, we can approximate
these x with linear functions,4 4 It helps to think of the point being

approximated as a x = x? + dx
f (x) ≈ f (x?) + D f [x?](x− x?)

If x? is a maximum, then

f (x?) ≥ f (x?) + D f [x?](x− x?)

0 ≥ D f [x?](x− x?)

Linear approximations of x in the neighborhood of a local optimum
slope downward. This holds in all directions, so if x? is an interior
point,

D f [x?](dx) ≤ 0 D f [x?](−dx) ≤ 0

implying
D f [x?](dx) ≤ 0 − D f [x?](dx) ≤ 0

which can only be true if D f [x?](dx) = 0 for all steps dx

The derivative of a functional evaluated at an interior local optimum
must be the zero vector,

∇ f (x?) = 0

Proposition (First Order Conditions): If x? is an interior local maxi-
mum of a functional f in X, then there exists an open neighborhood
S of X such that

∇ f (x?) = 0

Notice that the first order conditions are a necessary, but insufficient
condition for finding a local maximum. It tells us that every local
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maximum satisfies the first order conditions – not that the satisfying
the first order conditions identifies a local maximum. The first order
conditions identify stationary points, which may be maxima, min-
ima, or saddle points, depending on the functions local concavity or
convexity.

Figure 1: By Nicoguaro -
Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=20570051

The spatial model has a unique, interior x? because the utility func-
tion is concave. This feature should be familiar from your study of
univariate calculus. Here, we extend this intuition to a multivariate
environment and study in greater depth the relationship between
concavity, smoothness, and optimization.

Recall the definition of a concave function.5 A function f is concave 5 See lecture notes on “Monotone,
Linear, and Convex Functions”on a convex set S if

f (αx1 + (1− α)x2) ≥ α f (x1) + (1− α) f (x2)

for all x1, x2 ∈ S and α ∈ [0, 1].

Proposition (Tangent Hyperplanes): If a function f is differentiable
and concave on a open, convex set S, then

f (x1) ≤ f (x2) + D f [x2](x1 − x2)

for all x1, x2 ∈ S.

The proposition claims that linear approximations of concave func-
tions always lie above their target. This is easy to visualize in the
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one-dimensional case. Every line tangent to a concave function f lies
above the function.

Proof: If f is concave,

f (αx1 + (1− α)x2) ≥ α f (x1) + (1− α) f (x2)

f (α(x1 − x2) + x2) ≥ α ( f (x1)− f (x2)) + f (x2)

f (α(x1 − x2) + x2)− f (x2)

α
≥ f (x1)− f (x2)

lim
α→0

f (α(x1 − x2) + x2)− f (x2)

α
≥ f (x1)− f (x2)

D f [x2](x1 − x2) + f (x2) ≥ f (x1)

which holds for arbitrary x1, allowing us to conclude

f (x1) ≤ f (x2) + D f [x2](x1 − x2)

as desired.

If we’re standing at the peak of a mountain, all paths lead down –
there is no direction to walk which will increase our elevation. If the
mountain is smooth, and the peak is interior to the neighborhood of
interest S then the peak itself must be flat! Why is this the case?

Rolle’s Theorem: Let f ∈ C[a, b] with f differentiable on (a, b). If
f (a) = f (b) then there exists some x ∈ (a, b) such that f ′(x) = 0.6 6 We leave the proof of this fact as an

exercise.
Proposition (Second Order Conditions): If x? is a stationary point of
f with ∇ f (x?) = 0 and f is strictly locally concave at x? (H f (x?) is
negative definite) then x? is a strict local maximum of f .

Corollary: If f is strictly concave and x? is interior to X, then x? is a
global maximum of f iff ∇ f (x?) = 0.

Proof: Applying the proposition on tangent hyperplanes, we have

f (x) ≤ f (x?) +∇ f (x?)T︸ ︷︷ ︸
0

(x− x?) = f (x?)

for all x in the interior of X.

Combining the first order conditions with the strict concavity of f
ensures that we have located global maxima of the function or local
maxima on concave neighborhoods of X.

Example: Let

f (x, y) = x2 − 6xy + 2y2 + 10x + 2y− 5

Find all critical points of the function and classify them as local max-
ima, local minima, or saddle points.
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Example: A linear model relates independent variables xi to a dependent
variable yi through the following equation

yi = xT
i β + εi

The distance between the predictions of the model and the data is
given by

εi = yi − xT
i β

The least squares estimator seeks to choose the model’s parameters β

in order to minimize the sum of squared errors across all observations
i ∈ {1, ..., N}

min
β

∑
i

ε2
i = ∑

i

(
yi − xT

i β
)2

(2)

Assume for the moment that ∑i ε2
i is a convex function.7 Then the 7 We leave the proof of this as an exer-

cise.first order conditions must characterize the optimal choice of β,
which we’ll denote with β̂. Remember, there are multiple indepen-
dent variables for each observations, each of which we’ll denote with
xij, where xij is individual8 i’s value for variable j. Each β in the vec- 8 or country, state, etc.

tor of coefficients will be denoted with β j Then Equation 2 becomes

min
β

∑
i

ε2
i = ∑

i

(
yi −∑

j
xijβ j

)2

and the first order conditions are

∂ε2
i

∂βk
= 2 ∑

i

(
yi −∑

j
xijβ j

)
(−xik) = 0

∑
i

yixik = ∑
i

xik ∑
j

β jxij

Which must hold for all j ∈ {1, ..., J}. Stacking these first order
conditions and writing sums as dot products gives

XTy = XTXβ

where

y =


y1
...

yn

 X =


x11 · · · x1J

...
. . .

...
xN1 · · · xNJ

 β =


β1
...

β J


which gives9 9 Verify that β̂ is a J × 1 vector

β̂ =
(

XTX
)−1

XTy
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Constrained Optimization

Suppose a candidate for Senate of the United States must decide how
many dollars to allocate to TV advertising in each TV market in his
state. Let xi ∈ R+ denote the amount that the candidate chooses to
allocate to each district. The campaign manager has given the can-
didate a fixed budget B to spend on TV advertising across the state
and demanded that he spend each and every dollar. An increasing
and concave function vi(xi) determines how much voter support the
candidate receives as a function of his TV advertisment allocation.
The candidate seeks to maximize the amount of voter support. How
should he allocate spending across markets?

This is a constrained optimization problem, where the feasible set of
allocations is defined by the constraint condition. In the case of our
Senate candidate, he must spend B dollars on TV advertising, or

∑
i

xi = B

This equation defines the G(θ) constraint set defined in our general
optimization problem 1.10 We now have 10

max
x∈G(θ)

f (x, θ)
max

x ∑
i

vi(xi)

subject to ∑
i

xi = B
(3)

How can we solve this problem? The first order condition approach
outlined above will clearly not work, because vi(xi) are increasing,
implying there are no stationary points. Now, we look for station-
arity along the constraint set – among feasible allocations, which
maximizes ∑i vi(xi)?

As we did above, let’s work axiomatically to characterize what an
optimal solution to 3 looks like. Suppose x? is the optimal allocation
across markets and satisfies the budget constraint

∑
i

x?i = B

If this is true, then we can’t rearrange the elements of x? in a manner
that satifies the budget constraint and increases total vote share.
Consider a vector of proposed changes dx. Satisfying the budget
constraint requires

∑
i

dxi = 0 (4)

If x? is optimal, then we also know

∑
i

vi(x?i ) ≥∑
i

vi(x?i + dxi)︸ ︷︷ ︸
I
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We can approximate (I) with a derivative, giving

∑
i

vi(x?i + dxi) ≈∑
i

vi(x?i ) + Dvi[x?i ]dxi

Combining these gives

∑
i

vi(x?i ) ≥∑
i

vi(x?i + dxi) ≈∑
i

vi(x?i ) + Dvi[x?i ]dxi

implying
0 ≥∑

i
Dvi[x?i ]dxi (5)

Consider the case in which there are only two TV markets in the
state. Then we have

0 ≥ Dv1[x?1 ]dx1 + Dv2[x?2 ]dx2

and the constraint implies

dx1 + dx2 = 0 =⇒ dx2 = −dx1

Then,

0 ≥ Dv1[x?1 ]dx1 − Dv2[x?2 ]dx1

Dv2[x?2 ]dx1 ≥ Dv1[x?1 ]dx1

Dv2[x?2 ] ≥ Dv1[x?1 ]

But we also have dx1 = −dx2, giving

0 ≥ −Dv1[x?1 ]dx2 + Dv2[x?2 ]dx2

Dv1[x?1 ]dx2 ≥ Dv2[x?2 ]dx2

Dv1[x?1 ] ≥ Dv2[x?2 ]

We conclude
Dv1[x?1 ] = Dv2[x?2 ]

This condition states that the marginal vote share gained by spending
in market 1 must equal the marginal vote share gained by spend-
ing in market 2 at the optimal allocation. The optimal allocation is
therefore stationary with respect to the constraint set. We can see the
geometry implied by this condition below.

The intuition applies more generally. Return to the case of many TV
markets over which to allocate spending. If we consider an arbitrary
set of dx, then Inequality 5 implies

Dvi[x?i ] = Dvj[x?j ] for all i, j
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Figure 2: Carter pg. 526

The Method of Lagrange

In practice, we usually solve these sorts of problems with the method
of Lagrange, which converts constrained optimization problems into
unconstrained problems whose solution implicitly satisfies our con-
straint. The idea is to bake the constraints we’ve derived into the first
order condtions of an unconstrained optimization problem. First,
we’ll state the theorem and then show how it works in the context of
our TV advertisement problem.

Theorem (Lagrange): If x? is a local optimum11 of 11 Notice that the method only guar-
antees that it will find local optima. If
we want the method to identify global
optima, then we need the objective
function to be concave along the con-
straint set. It is easy to see that the
objective function pictured in Figure X
satisfies this condition. But we will not
go into more analytic depth here.

max
x

f (x)

subject to g(x) = 0
(6)

Then there exists a unique set of multipliers λ such that

∇ f (x?) = λT∇g(x?)

When we have a problem that satisfies these conditions, we can write
the constrained problem as an unconstrained problem with a penalty,
or

max
x

L = f (x)− λT g(x)

whose first order conditions yield the multiplier FOC in the Theorem.
We call the maximand in this setting the Legrangian and denote it
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with L. Going back to our TV advertisement example, we can write
the constraint as

B−∑
i

xi = 0

which gives the Legrangian

L = ∑
i

vi(xi)− λ

(
B−∑

i
xi

)
This yields the following set order conditions

v′1(x1) = λ

· · · = · · ·
v′n(xn) = λ

Notice that this replicates the condition we derived using the deriva-
tive approximation approach, with

λ = Dvi[x?i ] = Dvj[x?j ] for all i, j

The marginal utility of TV ad spending must be equalized across
markets. We combine this set of conditions with the constraint condi-
tion B = ∑i xi to get a set of N + 1 equations that can be solved for λ

and x.

Example: Utility Maximization12 12 Assume α and β are such that xαyβ

is concave. . . you found a sufficient
condition for this property on your last
problem set.

max
x,y

xαyβ

subject to x + y = B
(7)

Example: Ridge Regression It is sometimes helpful to think about
the Lagrange multiplier as a “penalty” enacted on solutions that
violate the constraint. Consider again the linear model

yi = xT
i β + εi

Under some conditions, we might worry that the line of best fit given
by the β̂ vector might mistake noise for signal, and find a relationship
between variables that is actually due to random noise. We call this
phenomenon overfitting. The method of ridge regression provides a
simple fix to the problem of overfitting.

By penalizing complexity in the β̂ vector, we balance a tradeoff be-
tween model fit and model parsimony. The ridge estimator β̂ridge

solves the following constrained optimization problem

min
β

∑
i

(
yi − xT

i β
)2

subject to ‖β‖2 ≤ λ

(8)
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Figure 3:
https://www.quora.com/How-would-
you-describe-the-difference-between-
linear-regression-lasso-regression-and-
ridge-regression

‖β‖2 is a measure of the complexity of the β vector.13 The constraint 13 See lecture notes on Normed Linear
Spaces.demands that this vector not become too complex. Alternatively, we

can formulate the problem using the method of Lagrange

L = ∑
i

(
yi − xT

i β
)2
− λ‖β‖2

We see that λ‖β‖2 acts as a penalty on the objective function, decreas-
ing L as β becomes more complex. This λ is called a tuning parameter
and is usually strategically chosen to maximize out-of-sample predic-
tion quality of a model.
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