
Ordered Sets

Motivation

When we build theories in political science, we assume that political agents seek the best

element in an appropriate set of feasible alternatives. Voters choose their favorite candidate

from those listed on the ballot. Citizens may choose between exit and voice when unsatisfied

with their government. Consequently, political science theory requires that we can rank

alternatives and identify the best element in various sets of choices. Sets whose elements can

be ranked are called ordered sets. They are the subject of this lecture.

Relations

Given two sets A and B, a binary relation is a subset R ⊂ A × B. We use the notation

(a, b) ∈ R or more often aRb to denote the relation R holding for an ordered pair (a, b). This

is read “a is in the relation R to b.” If R ⊂ A× A, we say that R is a relation on A.

Example. Let A = {Austin, Des Moines, Harrisburg} and let B = {Texas, Iowa,

Pennsylvania}. Then the relation R = {(Austin, Texas), (Des Moines, Iowa), (Harrisburg,

Pennsylvania)} expresses the relation “is the capital of.” �

Example. Let A = {a, b, c}. The relation R = {(a, b), (a, c), (b, c)} expresses the relation

“occurs earlier in the alphabet than.” We read aRb as “a occurs earlier in the alphabet than

b.” �
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Properties of Binary Relations

A relation R on a nonempty set X is

reflexive if xRx for each x ∈ X

complete if xRy or yRx for all x, y ∈ X

symmetric if for any x, y ∈ X, xRy implies yRx

antisymmetric if for any x, y ∈ X, xRy and yRx imply x = y

transitive if xRy and yRz imply xRz for any x, y, z ∈ X

Any relation which is reflexive and transitive is called a preorder. A set on which

a preorder is defined is called a preordered set. In our theory of choice, we refer to

a preorder on X as a preference relation on X. Preorders fall into two fundamental

categories, depending on whether or not the relation is symmetric. A symmetric preorder

is called an equivalence relation. A preorder that is not symmetric is called an order

relation. We will focus on order relations in this lecture but you should familiarize yourself

with equivalence relations in the Appendix.

Order Relations

An order relation is a relation, %, that is reflexive and transitive but not symmetric. An

ordered set (X,%) consists of a set X with an order relation % defined on X. For any two

elements x, y ∈ X, the statement x % y is read “x dominates y.”

Every order relation % on X induces two additional relations, � and ∼.

x � y ⇐⇒ x % y ∧ ¬[y % x]

The statement “x � y” is read “x strictly dominates y.” The relation � is transitive but not

reflexive.

x ∼ y ⇐⇒ x % y ∧ y % x
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for all x, y ∈ X. The statement “x ∼ y” is read “x and y” dominate each other.

Example The natural order ≥ on R induces the strict order > and the equivalence relation

=. �

We typically use order relations in the context of choice. Therefore it is convenient to

read x % y as “x is preferred to y.” The statement x � y can be read as “x is strictly

preferred to y.” The statement x ∼ y can be read “x is indifferent to y.”

Maximal and Best Elements

Our goal in our theory of choice is identify what our actor will choose given a set of alter-

natives. In general we assume that the actor will choose an object they most prefer. The

following definitions formalize the notion of “most prefer.”

Given (X,%), an element x is a maximal element if there is no y ∈ X such that y � x.

x ∈ X is called the best element in X if x % y for all y ∈ X.1

An ordered set may have no maximal or best elements. For these sets the concept of

upper bounds is useful. Let A be a nonempty ordered subset of X. An element x ∈ X is

called an upper bound for A if x % a for all a ∈ A. An upper bound is called a least

upper bound or supremum for A if it precedes every other upper bound for A. I.e for all

upper bounds y ∈ X, for a least upper bound x, y � x.

Example Consider the ordered set ([a, b],≥). b is the maximal element, the best element,

and the least upper bound. Now consider ((a, b),≥). The set has no maximal or best element.

b is its least upper bound in R. �

Example A 1-simplex, ∆1, is a collection of points in R2
+ such that for all (a, b) ∈ ∆1,

a + b = 1. Graphically, a 1-simplex is represented as a line segment connecting (1, 0) on

the x-axis to (0, 1) on the y-axis. Let X = ∆1 and ≥ be the natural vector order. That

is, for x, y ∈ R2, x ≥ y if and only if xi ≥ yi for all i = 1, 2. Every element in the ordered

1It is more common to refer to a best element as a “maximum element.” I use best instead of maximum
to more clearly differentiate it from a maximal element.
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set (∆1,≥) is a maximal element. To see this, note that there exists no (a, b) ∈ ∆1 such

that (a, b) > (1, 0). This follows from the fact that 1 > a for all (a, b) 6= (1, 0). Now

consider (1− ε, ε). Since ε > b for all (a, b) 6= (1, 0), there is no (a, b) > (1− ε, ε). Although

every element in ∆1 is a maximal element, there is no best element. To see this, assume

(a, b) is a best element. This implies that (a, b) % (c, d) for all (c, d). But for all (a, b),

(c, d) = (a − ε, b + ε) which implies that (a, b) and (c, d) cannot be compared. Therefore it

cannot be true that (a, b) % (c, d) which implies that (a, b) is not a best element. �

As the examples illustrate, an ordered set or subset may have multiple maximal and best

elements or no maximal or best elements. This can be problematic in applications when

we want to study what choices we believe our actors will make. By imposing additional

properties on the set X or the order relation %, we can ensure the existence of a maximal

or best element or the uniqueness of the maximal or best element.

We begin by imposing finiteness on X. If X is finite, then (X,%) has at least one maximal

element where % is any order relation. Proof of this is left as an exercise. In the rest of

this lecture, we allow X to be infinite and instead impose additional properties of binary

relations on order relations.

Partially Ordered Sets

Uniqueness of a best element may be achieved by imposing the additional property of an-

tisymmetry on an order relation. A partial order is a relation that is reflexive, transitive,

and antisymmetric. A set paired with a partial order is called a partially ordered set.

Example The natural vector order on Rn is a partial order. Antisymmetry is easy to

check. (a, b) ≥ (c, d) implies that a ≥ c and b ≥ d. Similarly, (c, d) ≥ (a, b) implies c ≥ a

and d ≥ b. Therefore a = c and b = d. Transitivity is straightforward to check (verify that

this is true). Note that the order is not complete. For example, (1,1) ≥ (1,0), but (0,1) and

(1,0) are not comparable. �
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The significance of antisymmetry is that, if it exists, the least upper bound of any subset

of a partially ordered set is unique. To see this, consider a least upper bound of X, x. By the

definition of least upper bound, z % x for all other upper bounds, z ∈ X. Let y be a second

least upper bound. Because y is a least upper bound, x % y. Because x is a least upper

bound, y % x. But antisymmetry implies x = y. Therefore x is unique. If a best element

exists, the best element is a least upper bound and is therefore unique. Antisymmetry,

however, is not sufficient to guarantee existence, only uniqueness.

Example: Consider Rn
+ ordered by the natural vector order. Now take the subset of

points, X, such that for any (a, b) ∈ X, a + b ≤ 1. The ordered subset has a continuum

of maximal points: all points such that a + b = 1 are maximal. It does not have a best

element as no points in the maximal set can be compared. The least upper bound of the set

is unique: (1, 1). �

Example: Consider Rn
+ ordered by the natural vector order. Consider the subset of points,

X, such that for any (a, b) ∈ X, a ≤ 1 and b ≤ 1. The set has a unique maximal and best

point, (1, 1), which corresponds to the least upper bound of the set. �

Totally Ordered Sets

A partial order is partial in the sense that not all elements are comparable. If all elements

in a partially ordered set are comparable so that % is also complete, we refer to % is a total

order and refer to a totally ordered set as a totally ordered set.2

Example (R,≥) is a totally ordered set. �

Example (∆1,≥) is not a totally ordered set where ≥ is the natural vector order. Neither

(1, 0) ≥ (0, 1) nor (0, 1) ≥ (1, 0) is true. �

We saw that for a partially ordered set, if a least upper bound exists, it is unique, implying

that if a best element exists, it is unique. In the examples we saw that multiple maximal

2It is common to refer to a totally ordered set as a “chain.” A total order may also be referred to as a
“linear order.”
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elements may exist in a partially ordered set. For a totally ordered set, if a maximal element

exists it is unique. This implies that if a best element exists, it is unique.

To see this, assume that x and y are maximal elements in a totally ordered set. By

definition, there is no z such that z � x and no w such that w � y. For x this implies that

for all z, either x % z or the two elements are not comparable. Similarly for all w, either

y % w or the two elements are not comparable. Because the total order is complete, all

elements are comparable. Therefore for all z, x % z and for al w, y % w. Therefore x % y

and y % x. Because the order relation is antisymmetric, this implies that x = y. Therefore

the maximal element is unique.

Weakly Ordered Sets

A weak order is an order relation that is complete, reflexive, and transitive. A weak order

is often referred to as a rational order or a rational preference relation. In a weakly

ordered set, every element is related to every other element. For our theory of choice this

is desirable. We want the actors in our models to be able to compare any action or outcome

in the model in terms of their preferences. Dropping the requirement of antisymmetry also

allows us to more easily express indifference in the set of choices that actors make.

Example As we saw, (R2,≥) is not a weakly ordered set. The elements (0, 1) and (1, 0)

for example cannot be compared. Now let % be defined so that x % y if and only if

max{x1, x2} ≥ max{y1, y2}. (R2,%) is a weakly ordered set. Note that (0, 1) % (1, 0) and

(1, 0) % (0, 1) or (1, 0) ∼ (0, 1). �

Note the difference between a weakly ordered set and a total order. A total order imposes

antisymmetry on a complete order set while a weak order does not. A consequence of this

is that a weakly ordered set may have multiple best elements while a totally ordered set can

only have one best element. In political science a weak or rational order often makes more

sense than a total order. We constantly deal in tradeoffs across multiple dimensions of policy.
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This induces indifference classes across our choice space. We may think, for example, that

it is a reasonable assumption that a Republic politician considers a combination of liberal

social policy and conservative economic policy to be no better or worse than a conservative

social policy and liberal economic policy. If these are the only two options available for her

to vote on, then our theory of choice allows both of these to be best elements.

Another useful property of weakly ordered sets is that maximal and best elements coin-

cide. That is, if x is maximal, then x is also best and vice versa. To see this, let (X,%) be

a weakly ordered set and let x be a best element. It is a property of a best element that

it is also a maximal element (proof of this is left as an exercise). Now let x be a maximal

element. By the definition of maximal element, there is no y ∈ X such that y � x. Recall

the definition of �. If y � x, then y % x and ¬[x % y]. Because x is maximal, this statement

is false. That is, either ¬[y % x] and/or x % y. If x % y for all y, then x is best. Now

consider ¬[y % x]. This can be true in two ways. Either x % y or neither x % y nor y % x.

Because % is a weak order and is complete, it must be the case that x % y. This is true for

all y ∈ X. Therefore maximal implies best in a weakly ordered set.

Note that “rational” in our theory of choice refers to something very specific and math-

ematical. Presumably you have encountered or perhaps uttered a sentence such as “that

dictator is irrational.” The way we use the term “rational,” this would imply that his or her

preferences over some set of political outcomes is incomplete or intransitive. Perhaps he or

she prefers apples to bananas, bananas to carrots, and carrots to apples. Or he or she cannot

compare economic growth to political survival or that she neither prefers coffee to tea nor is

indifferent between the two.

Exercises

1) Prove that for the set of positive integers, the relation “m is a multiple of n” is an order

relation.
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2) Let X = {1, 2, ..., 9}, ordered by the relation “m is a multiple of n”. Find all maximal

and best elements of this ordered set and its least upper bound in Z.

3) Show that x ∼ y is an equivalence relation if % is rational.

4) Prove or disprove the following statements

i) Every best element is a maximal element.

ii) Every maximal element is a best element.

iii) An element is a best element if and only if it is a maximal element.

5) Let X = ∆1 and % be defined such that for any (a, b), (c, d) ∈ X, (a, b) % (c, d) if and

only if max {a, b} ≥ max {c, d}.

i) Find all maximal elements and best elements if they exist.

ii) Find all least upper bounds of the set in R2.

iii) Use the properties of binary relations to identify whether the set is partially ordered,

totally ordered, and/or weakly ordered.

6) Prove that if X is finite, (X,%) has at least one maximal element for all order relations.

Appendix 1: Equivalence Relations

A relation∼ on a nonempty set X is called an equivalence relation if it is reflexive, symmetric,

and transitive. For any x ∈ X, the equivalence class of x relative to ∼ is defined as the

set [x]∼ ≡ {y ∈ X : y ∼ x}. We often exploit indifference in our theory of choice and

equivalence classes help us formalize this.

Example: Equality is an equivalence relation on R. Clearly x = x so the relation is

reflexive. It is also symmetric: if x = y, then y = x. Transitivity is also easy to check: if x = y

and y = z, then x = y = z so x = z. The equivalence class of ∼ is [x]∼ = {y ∈ X : y = x}.

Clearly for any x, its equivalence class is a singleton: on R, each element is equal only to

itself.3 �
3If u : X → R is a utility function representing preferences on a set X, then defining x ∼ y by u(x) = u(y)

gives the indifference equivalence relation.
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Example: Let X = {(a, b) : a, b ∈ N} and define the relation ∼ on X by (a, b) ∼ (c, d)

if and only if ad = bc. First we check reflexiveness: (a, b) ∼ (a, b) is true iff ab = ab which

checks out. Now check symmetry: does (a, b)R(c, d) imply (c, d)R(a, b)? Let’s check: does

ad = bc imply cb = da? Yes. Finally check transitivity. Do (a, b)R(c, d) and (c, d)R(e, f)

imply (a, b)R(e, f)? That is, do ad = bc and cf = de imply af = be? Note that ad = bc

implies a
b

= c
d

and cf = de implies c
d

= e
f

so a
b

= c
d

= e
f

which gives us af = be. The

equivalence class is given by [(a, b)]∼ = {(c, d) ∈ X : c
d

= a
b
}. With this relation, 4

2
is

equivalent to 8
4
. This is obvious to us precisely because the rational numbers are constructed

as equivalence classes such that (4, 2), (8, 4) ∈ [(2, 1)]∼. �

There is a close relationship between equivalence relations on a set and partitions of that

set. A partition of a set X is a collection of disjoint subsets of X whose union is the full

set X. Any equivalence relation on a set X partitions X. Each element of X belongs to

one and only one equivalence class. In the first examples above, equality partitions R into

singletons. In the second example, ∼ partitions X into the rational numbers.

Appendix 2: Lattices

A lattice is a partially ordered set in which every pair of elements has a least upper bound.

If x and y are two elements of a lattice, L, their least upper bound x ∨ y is an element of L

called a join. Their greatest lower bound x ∧ y, called their meet, is also an element of L.

Lattices have some desirable properties. We will see later on that lattices admit a powerful

tool for theoretical analysis called “monotone comparative statics.” They also allow us to

identify when a subset of Rn will have a best element (or least upper bound).

Example: We saw above that a 1-simplex ordered by ≥ does not have a best element.

Consider another subset X ⊂ R2
+ with the natural vector order ≥ and let X be a lattice.

In particular, let X be the unit square. X is clearly a lattice: (1, 0) ∨ (0, 1) = (1, 1) and

(1, 0) ∧ (0, 1) = (0, 0). X also has a maximal element: (1, 1). �
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Example Now let X be the subset of the unit square that contains points less than or

equal to ∆1 when ordered by ≥. This set is not a lattice: (1, 0) ∨ (0, 1) = (1, 1) /∈ X. The

set of maximal elements of X is ∆1. As we saw above, ∆1 has no best element. �

The above examples illustrates a useful shorthand to keep in mind later on in your

research career when working in (Rn,≥): “squares” are lattices, “triangles” are not.
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