Introduction to Mathematics for Political Science

Problem Set 9: Matrix Inversion and Determinants

Instructions: You are encouraged to work in groups and actively participate on the course discussion page. Submitted solutions must be your individual work. Do not use a calculator or search for solutions. Show all of your work. Submit typed solutions using the link on the course page.

1. Consider the following system of equations:

$$3x_1 - x_2 = 10 -x_1 + 4x_2 = 4$$

Write this system in Ax = b form and solve via matrix inversion.

- 2. Let C=AB where C is invertible and A and B are square matrices. Solve for $A^{-1,\,1}$
- 3. Let M = ABC where M is invertible and A, B, and C are square matrices. Solve for B^{-1} .²
- 4. If B is the inverse of A^2 , show that AB is the inverse of A^3 .
- 5. Let

$$X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{and} \quad Y = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

What are X^{-1} and Y^{-1} , assuming $ad \neq bc.^4$ **Hint:** First, multiply the two matrices XY. Then, attempt to solve for X^{-1} and Y^{-1} .

- 6. A is an *idempotent* matrix if and only if AA = A. Show that if A is symmetric $(A^{\top} = A)$ and idempotent then $(I A) = (I A)(I A)^{\top}$, where I is the identity matrix.
- 7. Let $R_{m \times n}$ be a rectangular matrix $(m \neq n)$ and $A_{m \times m}$ be a symmetric matrix. Show $R^T A R$ is also symmetric. What are the dimensions of this matrix?⁵

 $^{^1 \}mathrm{Strang}$ p. 90#12

²Strang p. 90 #13

 $^{^3 \}mathrm{Strang}$ p. 90#18

⁴Strang p. 90 #16

 $^{^5}$ Strang 117 #19

- 8. Show every orthogonal matrix A has determinant 1 or -1. Hint: Apply the product rule (|AB| = |A||B|) and the transpose rule $(|A| = |A^T|)$ for determinants.⁶
- 9. Let $\boldsymbol{x} = \{x_1, ..., x_{50}\}$ denote the number of electoral votes for each state. Let $\boldsymbol{y}_i = \{y_{i1}, ..., y_{ij}, ..., y_{i50}\}$ denote whether or not candidate $i \in \{R, D\}$ won the votes of a given state, where $y_{ij} \in \{0, 1\}$. Write an expression for the total number of votes for each candidate.

 $^{^{6}}$ Strang p. 252 #8