\[ \require{color} \definecolor{bcOrange}{RGB}{189,97,33} \definecolor{bcYellow}{RGB}{189,142,40} \newcommand\iddots{\mathinner{ \kern1mu\raise1pt{.} \kern2mu\raise4pt{.} \kern2mu\raise7pt{\Rule{0pt}{7pt}{0pt}.} \kern1mu }} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \newcommand{\bm}[1]{\boldsymbol{\mathbf{#1}}} \newcommand{\ubar}[1]{\underline{#1}} \]
“We believe that trade must be fair and reciprocal. The United States will not be taken advantage of any longer.”
\(\qquad\) – Donald Trump, Feb. 2019
“I’m going to have a trade prosecutor…to make sure every trade deal we’re already in is absolutely followed to the letter so nobody takes advantage of us.”
\(\qquad\) – Hillary Clinton, Oct. 2016
“Internationally, we are seeing a tendency toward protectionism and navel-gazing…What we need is trade that’s both fair and free.”
\(\qquad\) – Shinzo Abe, Oct. 2016
“An open world is only worth it if the competition that takes place there is fair.”
\(\qquad\) – Emmanuel Macron, Sep. 2017
Direct
Indirect (Behind-the-Border)
Effective Discrimination: Target trade-disorting instruments to disproportionately affect disfavored trading partners.
Trade Costs: Policy distortions and transportation costs to access market \(i\) in excess of those faced by firms in country \(i\)
Overview
\(\tau_{ij} - 1 \geq 0\) – ad valorem tariff equivalent of policy barriers gov \(i\) imposes on gov \(j\)
\[ \bm{\tau}_{N \times N} = \begin{pmatrix} 1 & \cdots & \tau_{1n} \\ \vdots & \ddots & \vdots \\ \tau_{n1} & \cdots & 1 \end{pmatrix} \]
\[ \bm{d}_{N \times N} \mapsto \left( \bm{X}_{N \times N}, \bm{P}_{N \times 1} \right) \]
\[ \bm{d}_{N \times N} \mapsto \left( \color{bcOrange} \bm{X}_{N \times N}, \bm{P}_{N \times 1} \color{black} \right) \]
Observables
\[ \left( \color{bcOrange} \bm{X}_{N \times N}, \bm{P}_{N \times 1} \color{black} \right) \mapsto \bm{d}_{N \times N} \]
Consumer’s Problem
\[\begin{equation*} \label{eq:consumer} \begin{split} \max & \quad U_i = Q_i^{\nu_i} S_i^{1 - \nu_i} \\ \text{subject to} & \quad P_i Q_i + P_i^s S_i \leq w_i L_i \end{split} \end{equation*}\]
Tradable Goods
\[ Q_i = \left( \int_{[0,1]} \alpha_{h(\omega)}^{\frac{1}{\sigma}} q_i(\omega)^{\frac{\sigma - 1}{\sigma}} d \omega \right)^{\frac{\sigma}{\sigma - 1}} \]
Tradable Price Index
\[ P_i = \left( \int_{[0,1]} \alpha_{h(\omega)} p_i(\omega)^{1 - \sigma} d \omega \right)^{\frac{1}{1 - \sigma}} \]
Expenditure on Tradables
\[ E_i^q = \nu_i I_i + D_i = P_i Q_i^\star \]
“Fundamental” Cost
\[ c_i = w_i^{1 - \beta} P_i^{\beta} \]
Product-Specific Costs, Local Prices
\[ p_{ii}(\omega) = \frac{c_i}{z_i(\omega)} \]
Technology (Fréchet) (Fréchet Distribution)
\[ F_i(z) = \text{Pr} \left\{ z_i(\omega) \leq z \right\} = \exp \left\{ - T_i z^{-\theta} \right\} \]
\[ p_{ji}(\omega) = d_{ji} p_{ii}(\omega) \]
\[ d_{ij} = \rho_j \delta_{ij} \tau_{ij} \]
\[ p_i^\star(\omega) = \min_{j \in \left\{ 1,...,N \right\}} \left\{ p_{ij} \right\} \]
\[ \Omega_{ij}^\star = \left\{ \omega \in [0,1] \text{ } \bigg| \text{ } p_{ij}(\omega) \leq \min_{k \neq j} \left\{ p_{ik} \right\} \right\} \]
Prices
\[ P_i(\bm{w}) = \left( \int_{\omega \in [0,1]} \alpha_{h(\omega)} p_i^\star(\omega)^{1 - \sigma} d \omega \right)^{\frac{1}{1 - \sigma}} \]
Trade Flows
\[ X_{ij}(\bm{w}) = \int_{\color{bcOrange} \omega \in \Omega_{ij}^\star \color{black}} p_{ij}(\omega) \tilde{q}_i \left( p_{ij} (\omega) \right) d \omega \]
Market Clearing
\[\begin{equation} \underbrace{\sum_{j} X_{ji}(\bm{w})}_{\text{tradable sales}} + D_i = \underbrace{\sum_j X_{ij}(\bm{w})}_{\text{tradable expenditure}} \label{eq:marketClearing} \end{equation}\]
Definition: An international equilibrium is a vector of wages \(\bm{w}\) such that (\(\ref{eq:marketClearing}\)) holds for each country.
Gravity Equation
\[ \lambda_{ij} = \frac{ T_j \left( \color{bcOrange} d_{ij} \color{black} w_j^{1 - \beta} P_j^{\beta} \right)^{- \theta} }{\gamma^{-1} P_i^{-\theta}} \]
Origin Differences
\[ \frac{\lambda_{ij}}{\lambda_{jj}} = \left( \delta_{ij} \tau_{ij} \frac{P_j}{P_i} \right)^{-\theta} \]
Origin Differences
\[ \frac{\lambda_{ij}}{\lambda_{jj}} = \left( \delta_{ij} \tau_{ij} \frac{P_j}{P_i} \right)^{-\theta} \]
Rationales for Divergence (\(\frac{\lambda_{ij}}{\lambda_{jj}} < 1\))
Origin Differences
\[ \frac{\lambda_{ij}}{\lambda_{jj}} = \left( \delta_{ij} \tau_{ij} \color{bcOrange} \frac{P_j}{P_i} \color{black} \right)^{-\theta} \]
Rationales for Divergence (\(\frac{\lambda_{ij}}{\lambda_{jj}} < 1\))
Origin Differences
\[ \frac{\lambda_{ij}}{\lambda_{jj}} = \left( \color{bcOrange} \delta_{ij} \tau_{ij} \color{black} \frac{P_j}{P_i} \right)^{-\theta} \]
Rationales for Divergence (\(\frac{\lambda_{ij}}{\lambda_{jj}} < 1\))
Inversion
\[ \tau_{ij} = \left( \frac{\lambda_{ij}}{\lambda_{jj}} \right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \frac{1}{\delta_{ij}} \]
\[ \tau_{ij} = \left( \frac{\lambda_{ij}}{\lambda_{jj}} \right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \frac{1}{\delta_{ij}} \]
\[ \tau_{ij} = \left( \color{bcOrange} \frac{\lambda_{ij}}{\lambda_{jj}} \color{black} \right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \frac{1}{\delta_{ij}} \]
\[ \tau_{ij} = \left( \frac{\lambda_{ij}}{\lambda_{jj}} \right)^{-\frac{1}{\theta}} \color{bcOrange} \frac{P_i}{P_j} \color{black} \frac{1}{\delta_{ij}} \]
\[ \tau_{ij} = \left( \frac{\lambda_{ij}}{\lambda_{jj}} \right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \color{bcOrange} \frac{1}{\delta_{ij}} \]
\[ \tau_{ij} = \left( \frac{\lambda_{ij}}{\lambda_{jj}} \right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \frac{1}{\delta_{ij}} \]
Structural Paramters
\[ \bm{\theta} = \left\{ \sigma, \theta, \bm{\nu} \right\} \]
\[ \lambda_{ij} = \tau_{ij} \lambda_{ij}^{\text{cif}} = \tau_{ij} \delta_{ij} \lambda_{ij}^{\text{fob}} \]
\[ \lambda_{jj}(\bm{\tau}) = \left( 1 - \sum_{k \neq j} \tau_{jk} \lambda_{jk}^{\text{cif}} \right) \]
\[ \lambda_{ij} = \tau_{ij} \lambda_{ij}^{\text{cif}} = \tau_{ij} \delta_{ij} \lambda_{ij}^{\text{fob}} \]
\[ \lambda_{jj}(\bm{\tau}) = \left( 1 - \sum_{k \neq j} \tau_{jk} \lambda_{jk}^{\text{cif}} \right) \]
\[ \color{bcOrange} \lambda_{jk}^{\text{cif}} \color{black} = \frac{X_{jk}^{\text{cif}}}{E_j} \]
\[ \tau_{ij} = \left( \frac{\lambda_{ij}^{\text{cif}}}{ \color{bcOrange} \lambda_{jj}(\bm{\tau}_j) \color{black} } \right)^{-\frac{1}{\theta + 1}} \left( \frac{\hat{P}_i}{\hat{P}_j} \right)^{\frac{\theta}{\theta+1}} \left( \frac{1}{\delta_{ij}(\bm{Z}_{ij})} \right)^{\frac{\theta}{\theta+1}} \]
Empirical Price Index
\[ \hat{P}_i(\bm{w}) = \left( \int_{\omega \in [0,1]} \color{bcOrange} \hat{\alpha}_{h(\omega)} \color{black} p_i^\star(\omega)^{1 - \sigma} d \omega \right)^{\frac{1}{1 - \sigma}} \]
Good Categories
\[ h : \Omega \rightarrow \mathcal{K} \]
Assumption: \(p_i(\omega) = p_i(\omega^\prime) = p_{ik}\) for all \(\omega, \omega^\prime \in \Omega_k\)
Demand
\[ x_{ik} = \int_{\omega \in \Omega_k} \alpha_k p_{ik}^{1 - \sigma} E_i^q P_i^{\sigma - 1} d \omega \]
Normalization
\[ \frac{\lambda_{ik}}{\lambda_{i0}} = \alpha_k \left( \frac{p_{ik}}{p_{i0}} \right)^{1 - \sigma} \]
Estimation
\[ \ln \Delta \lambda_{ik} = \ln \alpha_k + (1 - \sigma) \ln \Delta p_{ik} + \ln \epsilon_{ik} \]
Mode and Cost Functions
\[ g: \left\{ \boldsymbol{Z}_{ij}, d^m \right\} \rightarrow \delta_{ij}^{m o} \] \[ h: \left\{ \boldsymbol{Z}_{ij}, d^m \right\} \rightarrow \zeta_{ij}^{m o} \]
Aggregate Freight Costs
\[ \hat{\delta}_{ij} \left( \boldsymbol{Z}_{ij}, \boldsymbol{d}_{ij} \right) = \frac{1}{X_{ij}} \sum_{m = 1}^M x_{ij}^m \sum_{o=1}^O g \left( \boldsymbol{Z}_{ij}, d^m \right) h \left( \boldsymbol{Z}_{ij}, d^m \right) \]
\[ \bm{\theta} = \left\{ \sigma, \theta, \bm{\nu} \right\} \]
\[ \bm{\tau}_{N \times N} = \begin{pmatrix} 1 & \cdots & \tau_{1n} \\ \vdots & \ddots & \vdots \\ \tau_{n1} & \cdots & 1 \end{pmatrix} \]
\[ \tau_{ij} = \left( \frac{\lambda_{ij}^{\text{cif}}}{ \lambda_{jj}(\bm{\tau}_j) } \right)^{-\frac{1}{\theta + 1}} \left( \frac{\hat{P}_i}{\hat{P}_j} \right)^{\frac{\theta}{\theta+1}} \left( \frac{1}{\delta_{ij}(\bm{Z}_{ij})} \right)^{\frac{\theta}{\theta+1}} \]
Trade Restrictiveness Index
\[ \text{TRI}_i = \frac{1}{\sum_{j \neq i} E_j} \sum_{j \neq i} \tau_{ij} E_j \]
Market Access Index
\[ \text{MAI}_j = \frac{1}{\sum_{i \neq j} E_i} \sum_{i \neq j} \tau_{ij} E_i \]
DV: Structural Policy Barrier | |
Tariffs | 1.194** |
(0.570) | |
PTAs | -0.316*** |
(0.063) | |
Core NTM | 0.097 |
(0.163) | |
Health/Safety NTM | 0.171 |
(0.152) | |
Other NTM | -0.082 |
(0.205) | |
Importer Fixed Effects | Yes |
Exporter Fixed Effects | Yes |
N | 361 |
R2 | 0.876 |
Notes: | ***Significant at the 1 percent level. |
**Significant at the 5 percent level. | |
*Significant at the 10 percent level. |
DV: TRI | |
gdp (std) | 0.068 |
(0.068) | |
polity2 (std) | 0.119* |
(0.067) | |
N | 39 |
R2 | 0.087 |
Notes: | ***Significant at the 1 percent level. |
**Significant at the 5 percent level. | |
*Significant at the 10 percent level. |
Nondiscrimination in the Trade Regime
Democracy, Development, and Trade Policy
Sections
Acemoglu, Daron. 2005. “Politics and economics in weak and strong states.” Journal of Monetary Economics 52 (7): 1199–1226.
Alvarez, Fernando, and Robert E Lucas. 2007. “General equilibrium analysis of the Eaton–Kortum model of international trade.” Journal of Monetary Economics 54: 1726–68.
Anderson, James E, and Eric Van Wincoop. 2003. “Gravity with Gravitas: A Solution to the Border Puzzle.” The American Economic Review 93 (1): 170–92.
Baccini, Leonardo. 2019. “The Economics and Politics of Preferential Trade Agreements.” Annual Review of Political Science 22.
Bagwell, Kyle, and Robert W. Staiger. 1999. “An economic theory of GATT.” American Economic Review 89 (1): 215–48.
Baldwin, Richard. 2016. “The World Trade Organization and the Future of Multilateralism.” Journal of Economic Perspectives 30: 95–116.
Barari, Soubhik, In Song Kim, and Weihuang Wong. n.d. “Trade Liberalization and Regime Type: Evidence from a New Tariff-line Dataset.” http://web.mit.edu/insong/www/pdf/poltrade.pdf.
Bown, Chad P. 2004. “Trade policy under the GATT/WTO: empirical evidence of the equal treatment rule.” Canadian Journal of Economics/Revue Canadienne d‘Economique 37 (3): 678–720.
Chaney, Thomas. 2008. “Distorted Gravity: The Intensive and Extensive Margins of International Trade.” American Economic Review 98 (4): 1707–21.
Costinot, Arnaud, and Andrés Rodríguez-Clare. 2015. “Trade Theory with Numbers: Quantifying the Consequences of Globalization.” Handbook of International Economics 4: 197–261.
Eaton, Jonathan, and Samuel Kortum. 2002. “Technology, geography, and trade.” Econometrica 70 (5): 1741–79.
Eichengreen, Barry, and David Leblang. 2008. “Democracy and Globalization.” Economics & Politics 20 (3): 289–334.
Evenett, Simon J., and Bernard Hoekman. 2004. Government Procurement: Market Access, Transparency, and Multilateral Trade Rules. Policy Research Working Papers. The World Bank.
Gawande, Kishore, and Wendy L. Hansen. 1999. “Retaliation, Bargaining, and the Pursuit of "Free and Fair" Trade.” International Organization 53 (1): 117–59.
Gawande, Kishore, Pravin Krishna, and Marcelo Olarreaga. 2009. “What governments maximize and why: the view from trade.” International Organization 63 (03): 491–532.
———. 2015. “A Political-Economic Account of Global Tariffs.” Economics & Politics 27 (2): 204–33.
Head, Keith, and Thierry Mayer. 2014. “Gravity Equations: Workhorse, Toolkit and Cookbook.” In Handbook of International Economics, edited by Elhanan Helpman, G. Gopinath, and K. Rogoff, 4th ed., 131–96.
Kono, Daniel Yuichi. 2006. “Optimal obfuscation: Democracy and trade policy transparency.” American Political Science Review 100 (03): 369–84.
Kono, Daniel Yuichi, and Stephanie J Rickard. 2014. “Buying National: Democracy, Public Procurement, and International Trade.” International Interactions 40 (5): 657–82.
Lee, Jong-Wha, and Phillip Swagel. 1997. “Trade Barriers and Trade Flows Across Countries and Industries.” The Review of Economics and Statistics 79 (3): 372–82.
Maggi, Giovanni. 1999. “The role of multilateral institutions in international trade cooperation.” American Economic Review, 190–214.
Maggi, Giovanni, Monika Mrázová, and J Peter Neary. 2018. “Choked by Red Tape? The Political Economy of Wasteful Trade Barriers.”
Mansfield, Edward D., and Marc L. Busch. 1995. “The Political Economy of Nontariff Barriers: A Cross-National Analysis.” International Organization 49 (4): 723–49.
Melitz, Marc J. 2003. “The impact of trade on intra-industry reallocations and aggregate industry productivity.” Econometrica 71 (6): 1695–1725.
Milner, Helen V, and Keiko Kubota. 2005. “Why the move to free trade? Democracy and trade policy in the developing countries.” International Organization 59 (01): 107–43.
Queralt, Didac. 2015. “From Mercantilism to Free Trade: A History of Fiscal Capacity Building.” Quarterly Journal of Political Science 10: 221–73.
Rickard, Stephanie J. 2012. “A Non-Tariff Protectionist Bias in Majoritarian Politics: Government Subsidies and Electoral Institutions.” International Studies Quarterly 56: 777–85.
Rodrik, Dani. 2008. “Second-Best Institutions.” American Economic Review: Papers & Proceedings 98 (2): 100–104.
Simonovska, Ina, and Michael E Waugh. 2014. “The Elasticity of Trade: Estimates and Evidence.” Journal of International Economics 92 (1): 34–50.
Sposi, Michael. 2015. “Trade barriers and the relative price of tradables.” Journal of International Economics 96 (2): 398–411.
Waugh, Michael E. 2010. “International Trade and Income Differences.” American Economic Review 100: 2093–2124.
Waugh, Michael E, and B Ravikumar. 2016. “Measuring Openness to Trade.” Journal of Economic Dynamics and Control 72: 29–41.