\[ \require{color} \definecolor{bcOrange}{RGB}{189,97,33} \definecolor{bcYellow}{RGB}{189,142,40} \newcommand\iddots{\mathinner{ \kern1mu\raise1pt{.} \kern2mu\raise4pt{.} \kern2mu\raise7pt{\Rule{0pt}{7pt}{0pt}.} \kern1mu }} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \newcommand{\bm}[1]{\boldsymbol{\mathbf{#1}}} \newcommand{\ubar}[1]{\underline{#1}} \]
Gunshots
“In 2006 nearly 50 percent of the homicides and a large percentage of other violent crimes and property crimes committed in Chicago were attributed to street gangs that are involved in drug trafficking”
- National Drug Intelligence Center (2007)
Turf Wars
“Gang violence is often sparked by competitive relations over turf. A gang’s turf has economic and symbolic value: the gang regulates who sells what on its street corners, and gang members take pride in controlling the blocks where they grew up. Encroaching on another gang’s turf can trigger violence and a series of retaliations as gang members avenge fallen comrades.”
- Vargas (2016), Wounded City
First-Order Descriptive Questions
Existing Approaches
Observables: Time-stamped, geolocated homicides and nonfatal shootings
Unobservables:
Inferential Strategy
Gunshots (Data): Victim-based crime reports, 2004-2017 (CLEAR)
Turf (Validation): CPD internal reports, annual (Bruhn 2019)
\[ \bm{v} = \begin{pmatrix} v_1^1 & \cdots & \cdots & \cdots & v_1^T \\ \vdots & & & & \vdots \\ \vdots & & & & \vdots \\ \vdots & & v_i^t & & \vdots \\ \vdots & & & & \vdots \\ \vdots & & & & \vdots \\ v_N^1 & \cdots & \cdots & \cdots & v_N^T \end{pmatrix} \]
Observables
Unobservables
Non-Gang
Intra-Gang
Inter-Gang
Gang-Related Shootings
\[ \mathbb{E} [ x_i^t ] = \underbrace{ \frac{m_{\pi(i)}}{n_{\pi(i)}} \mathbb{E} [ \xi_{\pi(i)}^t ]}_{ \text{intra-gang} } + \underbrace{\sum_{k \neq \pi(i)} \frac{m_{\pi(i)}}{n_{\pi(i)}} \mathbb{E} [ \epsilon_{k, \pi(i)}^t ]}_{ \text{inter-gang} } \]
Non-Gang Related Shootings
\[ \mathbb{E} [y_i^t] = \eta_i r_i \] \[ \text{Var} [ y_i^t ] = \psi_i = \eta_i (1 - \eta_i) r_i \]
Proposition 1: The covariance in shootings between districts \(i\) and \(j\) is \[ a_{ij} = \begin{cases} \sum_{k \neq \pi(i)} \left( \left( \frac{m_{\pi(i)}}{n_{\pi(i)}} \right)^2 \text{Var} [ \epsilon_{k, \pi(i)}^t ] \right) + \left( \frac{m_{\pi(i)}}{n_{\pi(i)}} \right)^2 \text{Var}[ \xi_{\pi(i)}^t ] + \psi_i & \text{if } i = j \\ \color{bcOrange} \sum_{k \neq \pi(i)} \left( \left( \frac{m_{\pi(i)}}{n_{\pi(i)}} \right)^2 \text{Var} [ \epsilon_{k, \pi(i)}^t ] \right) + \left( \frac{m_{\pi(i)}}{n_{\pi(i)}} \right)^2 \text{Var} [ \xi_{\pi(i)}^t ] & \text{if } \pi(i) = \pi(j) \\ \color{bcOrange} \frac{m_{\pi(i)}}{n_{\pi(j)}} \frac{m_{\pi(j)}}{n_{\pi(i)}} \frac{c_{\pi(j)}}{c_{\pi(i)}} \text{Var} [\epsilon_{\pi(i), \pi(j)}^t] & \text{if } \pi(i) \neq \pi(j) \\ 0 & \text{otherwise} \end{cases} \]
Corollary 1 (Block Structure):
\[ A_{N \times N} = (a_{ij})_{ \left\{ i,j \in \mathcal{N} \right\} } \]
\[ \bar{A} = P A P \]
\[ \Theta = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \]
\[ \color{bcOrange} Q = \Theta B \Theta^T \]
\[ \begin{array}{ccc} ~ & \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} & \begin{pmatrix} 1_{\color{white} 11} & 1_{\color{white} 11} & 0_{\color{white} 11} & 0_{\color{white} 11} & 0_{\color{white} 11} \\ 0_{\color{white} 11} & 0_{\color{white} 11} & 1_{\color{white} 11} & 1_{\color{white} 11} & 1_{\color{white} 11} \end{pmatrix} \\ \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} \color{white} b_{11} & \color{white} b_{12} \\ \color{white} b_{11} & \color{white} b_{12} \\ \color{white} b_{21} & \color{white} b_{22} \\ \color{white} b_{21} & \color{white} b_{22} \\ \color{white} b_{21} & \color{white} b_{22} \end{pmatrix} & \begin{pmatrix} \color{white} b_{11} & \color{white} b_{11} & \color{white} b_{12} & \color{white} b_{12} & \color{white} b_{12} \\ \color{white} b_{11} & \color{white} b_{11} & \color{white} b_{12} & \color{white} b_{12} & \color{white} b_{12} \\ \color{white} b_{21} & \color{white} b_{21} & \color{white} b_{22} & \color{white} b_{22} & \color{white} b_{22} \\ \color{white} b_{21} & \color{white} b_{21} & \color{white} b_{22} & \color{white} b_{22} & \color{white} b_{22} \\ \color{white} b_{21} & \color{white} b_{21} & \color{white} b_{22} & \color{white} b_{22} & \color{white} b_{22} \end{pmatrix} \end{array} \]
\[ \Theta = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \]
\[ \color{bcOrange} Q = \Theta B \Theta^T \]
\[ \begin{array}{ccc} ~ & \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} & \begin{pmatrix} 1_{\color{white} 11} & 1_{\color{white} 11} & 0_{\color{white} 11} & 0_{\color{white} 11} & 0_{\color{white} 11} \\ 0_{\color{white} 11} & 0_{\color{white} 11} & 1_{\color{white} 11} & 1_{\color{white} 11} & 1_{\color{white} 11} \end{pmatrix} \\ \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} \color{bcOrange} b_{11} & \color{black} b_{12} \\ \color{bcOrange} b_{11} & \color{black} b_{12} \\ \color{black} b_{21} & \color{bcOrange} b_{22} \\ \color{black} b_{21} & \color{bcOrange} b_{22} \\ \color{black} b_{21} & \color{bcOrange} b_{22} \end{pmatrix} & \begin{pmatrix} \color{white} b_{11} & \color{white} b_{11} & \color{white} b_{12} & \color{white} b_{12} & \color{white} b_{12} \\ \color{white} b_{11} & \color{white} b_{11} & \color{white} b_{12} & \color{white} b_{12} & \color{white} b_{12} \\ \color{white} b_{21} & \color{white} b_{21} & \color{white} b_{22} & \color{white} b_{22} & \color{white} b_{22} \\ \color{white} b_{21} & \color{white} b_{21} & \color{white} b_{22} & \color{white} b_{22} & \color{white} b_{22} \\ \color{white} b_{21} & \color{white} b_{21} & \color{white} b_{22} & \color{white} b_{22} & \color{white} b_{22} \end{pmatrix} \end{array} \]
\[ \Theta = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \]
\[ \color{bcOrange} Q = \Theta B \Theta^T \]
\[ \begin{array}{ccc} ~ & \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} & \begin{pmatrix} 1_{\color{white} 11} & 1_{\color{white} 11} & 0_{\color{white} 11} & 0_{\color{white} 11} & 0_{\color{white} 11} \\ 0_{\color{white} 11} & 0_{\color{white} 11} & 1_{\color{white} 11} & 1_{\color{white} 11} & 1_{\color{white} 11} \end{pmatrix} \\ \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} \color{bcOrange} b_{11} & \color{black} b_{12} \\ \color{bcOrange} b_{11} & \color{black} b_{12} \\ \color{black} b_{21} & \color{bcOrange} b_{22} \\ \color{black} b_{21} & \color{bcOrange} b_{22} \\ \color{black} b_{21} & \color{bcOrange} b_{22} \end{pmatrix} & \begin{pmatrix} \color{bcOrange} b_{11} & \color{bcOrange} b_{11} & \color{black} b_{12} & \color{black} b_{12} & \color{black} b_{12} \\ \color{bcOrange} b_{11} & \color{bcOrange} b_{11} & \color{black} b_{12} & \color{black} b_{12} & \color{black} b_{12} \\ \color{black} b_{21} & \color{black} b_{21} & \color{bcOrange} b_{22} & \color{bcOrange} b_{22} & \color{bcOrange} b_{22} \\ \color{black} b_{21} & \color{black} b_{21} & \color{bcOrange} b_{22} & \color{bcOrange} b_{22} & \color{bcOrange} b_{22} \\ \color{black} b_{21} & \color{black} b_{21} & \color{bcOrange} b_{22} & \color{bcOrange} b_{22} & \color{bcOrange} b_{22} \end{pmatrix} \end{array} \]
Targets
Method
\[ \tilde{a}_{ij} = \frac{1}{N} \sum_{t=1}^T (v_i^t - \bar{v}_i) (v_j^t - \bar{v}_j) \]
\[ \bm{v} = \begin{pmatrix} v_1^1 & \cdots & \cdots & \cdots & v_1^T \\ \vdots & & & & \vdots \\ \vdots & & & & \vdots \\ \vdots & & v_i^t & & \vdots \\ \vdots & & & & \vdots \\ \vdots & & & & \vdots \\ v_N^1 & \cdots & \cdots & \cdots & v_N^T \end{pmatrix} \rightarrow \begin{pmatrix} \tilde{a}_{11} & \cdots & \cdots & \cdots & \tilde{a}_{1N} \\ \vdots & & & & \vdots \\ \vdots & & \tilde{a}_{ij} & & \vdots \\ \vdots & & & & \vdots \\ \tilde{a}_{N1} & \cdots & \cdots & \cdots & \tilde{a}_{NN} \end{pmatrix} = \tilde{A} \]
Finite Sample Noise
\[ \tilde{A} = \mathbb{E} [A] + \Phi \]
\[\begin{align*} Q - \text{diag}(Q) &= \mathbb{E}[A] - \text{diag}(\mathbb{E}[A]) \\ &= \tilde{A} - \Phi - \text{diag}(\mathbb{E}[A]) \\ \Phi - \text{diag}(\Phi) &= \left( \tilde{A} - \text{diag}(\tilde{A}) \right) - \left( Q - \text{diag}(Q) \right) \end{align*}\]
Moment Estimator
\[\begin{equation} \left( \hat{\Theta}, \hat{B} \right) = \argmin_{B \in \mathbb{R}^{J \times J}, \Theta \in \mathbb{M}^{N \times J}} \lVert \Phi - \text{diag}(\Phi) \rVert_F \end{equation}\]
\[\begin{align*} Q &= \Theta B \Theta^T \\ &= \Theta \Delta^{-1} \Delta B \Delta \Delta^{-1} \Theta^T \\ &= \Theta \Delta^{-1} Z \Lambda Z^T \Delta^{-1} \Theta^T \\ &= \Theta X \Lambda X^T \Theta^T \\ U D U^T &= \Theta X \Lambda X^T \Theta^T \end{align*}\]
Spectral Clustering: Relate eigenvectors of empirical covariance matrix \(\tilde{A}\) to those of \(Q\)
\[ \tilde{A} - \text{diag}(\tilde{A}) = \tilde{U} \tilde{\Lambda} \tilde{U}^T \]
\[\begin{align*} \left( \hat{\Lambda}, \hat{X}, \hat{\Theta} \right) &= \argmin_{ \Lambda \in \mathbb{D}^{J \times J}, X \in \mathbb{R}^{J \times J}, \Theta \in \mathbb{M}^{N \times J} } \lVert \Phi - \text{diag}(\Phi) \rVert_F \\ &= \argmin_{ \Lambda \in \mathbb{D}^{J \times J}, X \in \mathbb{R}^{J \times J}, \Theta \in \mathbb{M}^{N \times J} } \lVert \left( \tilde{A} - \text{diag}(\tilde{A}) \right) - \left( Q - \text{diag}(Q) \right) \rVert_F \\ &= \argmin_{ \Lambda \in \mathbb{D}^{J \times J}, X \in \mathbb{R}^{J \times J}, \Theta \in \mathbb{M}^{N \times J} } \lVert \tilde{U} \tilde{\Lambda} \tilde{U}^T - \left( \Theta X \Lambda X^T \Theta^T - \text{diag}(Q) \right) \rVert_F \\ &\approx \argmin_{ \Lambda \in \mathbb{D}^{J \times J}, X \in \mathbb{R}^{J \times J}, \Theta \in \mathbb{M}^{N \times J} } \lVert \color{bcOrange} \tilde{U} \color{black} \tilde{\Lambda} \color{bcOrange} \tilde{U}^T \color{black} - \color{bcOrange} \Theta X \color{black} \Lambda \color{bcOrange} \left( \Theta X \right)^T \color{black} \rVert_F \end{align*}\]
\[\begin{equation} \label{eq:kmeans} \left( \hat{X}, \hat{\Theta} \right) = \argmin_{ X \in \mathbb{R}^{J \times J}, \Theta \in \mathbb{M}^{N \times J} } \lVert \color{bcOrange} \Theta X - \tilde{U} \color{black} \rVert_F \end{equation}\]
Inter- and Intra-Gang Conflict Estimates
\[\begin{equation} \label{eq:B} \hat{B} = \hat{X} \hat{\Lambda} \hat{X}^T \end{equation}\]
Estimator
\[\begin{equation} \label{eq:nc} \min_{ k \in \left\{ 1, ..., J \right\} } \lVert ( \hat{B} - \text{diag}(\hat{B}) )^{(k)} \rVert_2 \end{equation}\]
Number of Gangs
Territorial Partition
Limitations
Extensions
Sections
Ahn, Seung C., and Alex R. Horenstein. 2013. “Eigenvalue Ratio Test for the Number of Factors.” Econometrica 81 (3): 1203–27.
Blattman, Christopher, Donald P. Green, Daniel Ortega, and Santiago Tobon. 2019. “Hot Spots Interventions at Scale: the Direct and Spillover Effects of Policing and City Services on Crime.”
Brantingham, P. Jeffrey, George E. Tita, Martin B. Short, and Shannon E. Redi. 2012. “The Ecology of Gang Territorial Boundaries.” Criminology 50 (3): 851–85.
Bruhn, Jesse. 2019. “The Geography of Gang Violence.”
Bueno De Mesquita, Ethan. 2018. “Territorial Conflict over Endogenous Rents.” Journal of Politics.
Chen, Kehui, and Jing Lei. 2018. “Network Cross-Validation for Determining the Number of Communities in Network Data.” Journal of the American Statistical Association 113 (521): 241–51.
Decker, Scott H. 1996. “Collective and normative features of gang violence.” Justice Quarterly 13 (2): 243–64.
Holland, Paul W., Kathryn Blackmond Laskey, and Samuel Leinhardt. 1983. “Stochastic blockmodels: First steps.” Social Networks 5 (2): 109–37.
Howell, James C, and Elizabeth Griffiths. 2018. Gangs in America’s communities. Sage Publications.
Jin, Jiashun. 2015. “Fast Community Detection by SCORE.” The Annals of Statistics 43 (1): 57–89.
Lei, Jing, and Alessandro Rinaldo. 2015. “Consistency of Spectral Clustering in Stochastic Block Models.” The Annals of Statistics 43 (1): 215–37.
Levitt, Steven D, and Sudhir Alladi Venkatesh. 2000. “An economic analysis of a drug-selling gang’s finances.” Quarterly Journal of Economics, 755–89.
Luxburg, Ulrike von. 2007. “A tutorial on spectral clustering.” Statistics and Computing 17 (4): 395–416.
Melnikov, Nikita, Carlos Schmidt-Padilla, and Maria Micaela Sviatschi. 2019. “Gangs, Labor Mobility, and Development.”
National Drug Intelligence Center. 2007. “Chicago High Intensity Drug Trafficking Area Drug Market Analysis.” U.S. Department of Justice.
Papachristos, Andrew V. 2009. “Murder by Structure: Dominance Relations and the Social Structure of Gang Homicide.” American Journal of Sociology 115 (1): 74–128.
Papachristos, Andrew V., David M. Hureau, and Anthony A. Braga. 2013. “The Corner and the Crew: The Influence of Geography and Social Networks on Gang Violence.” American Sociological Review 78 (3): 417–47.
Sanchez-Jankowski, Martin. 1991. Islands in the street: Gangs and American urban society.
Signoret, Patrick. 2020. “Mapping Criminal Organizations to Study Subnational Conflict and Politics.”
Sobrino, Fernanda. 2019. “Mexican Cartel Wars: Fighting for the U.S. Opioid Market,” 1–61.
Thrasher, Frederic Milton. 1927. The gang: A study of 1,313 gangs in Chicago. Chicago IL: University of Chicago Press.
Trebbi, Francesco, and Eric Weese. 2019. “Insurgency and Small Wars: Estimation of Unobserved Coalition Structures.” Econometrica 87 (2): 463–96.
Vargas, Robert. 2016. Wounded city: Violent turf wars in a Chicago barrio. Oxford University Press.
Venkatesh, Sudhir Alladi, and Steven D. Levitt. 2000. “"Are we a family or a business?" History and disjuncture in the urban American street gang.”