\[ \require{color} \definecolor{bcOrange}{RGB}{189,97,33} \definecolor{bcYellow}{RGB}{189,142,40} \newcommand\iddots{\mathinner{ \kern1mu\raise1pt{.} \kern2mu\raise4pt{.} \kern2mu\raise7pt{\Rule{0pt}{7pt}{0pt}.} \kern1mu }} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \newcommand{\bm}[1]{\boldsymbol{\mathbf{#1}}} \newcommand{\ubar}[1]{\underline{#1}} \]
“Free trade serves the cause of economic progress, and it serves the cause of world peace.”
\(\qquad\) – Ronald Reagan, Nov. 1982
“Commercial relations draw states into a web of mutual self-interest that constrains them from using force against one another.”
\(\qquad\) – Oneal and Russett (1999)
Dominant Paradigm: Trade mediates preexisting conflicts of interest
Examples
Commercial Policy Objectives
Market Access Externalities
International Anarchy
Model
Results
Trade and peace are correlated in equilibrium, but not because trade causes peace
International Economy
Domestic Political Economy
International Bargaining
Definition 1: A subgame perfect bargaining equilibrium is pair of strategies, \(\widetilde{\boldsymbol{\tau}}^\star(a_i, c_i)\) and \(\omega^\star(\widetilde{\boldsymbol{\tau}}; a_j, c_j)\) such that \[ \omega^\star(\widetilde{\boldsymbol{\tau}}; a_j, c_j, \rho) = \text{argmax}_{\omega \in \left\{\text{accept}, \text{war} \right\}} \widetilde{G}_j \left(\widetilde{\boldsymbol{\tau}}, \omega; a_j, c_j, \rho \right) \] and \[ \widetilde{\boldsymbol{\tau}}^\star(a_i, c_i, \rho) \in \text{argmax}_{\boldsymbol{\tau} \in [1, \overline{\tau}]^2} \mathbb{E}_{f(c_j)} \left[ \widetilde{G}_i \left(\widetilde{\boldsymbol{\tau}}, \omega^\star(\widetilde{\boldsymbol{\tau}}; a_j, c_j, \rho); a_i, c_i, \rho \right) \right] \]
Assumption 1: \(\bar{c}_j \leq \kappa_j\) and \(c_i < \kappa_i(\bar{c}_j)\) where \(\kappa_j\) and \(\kappa_i(\bar{c}_j)\) are positive constants defined in the Appendix.
Primitives
Domestic Conflict of Interest
\[\begin{equation*} V_i(\tau_i) = \alpha^\alpha (1 - \alpha)^{1 - \alpha} \frac{I_i(\tau_i)}{P_i(\tau_i)^\alpha} \end{equation*}\]
\[\begin{equation*} \Pi_i(\tau_i, \tau_j) = \int_{v_i} \Pi_i(p_i(\nu_i)) = (p_i^\star - w_i) \left( x_{ii}^\star(\tau_i) + x_{ji}^\star(\tau_j) \right) \end{equation*}\]
Primitives
Domestic Conflict of Interest
\[\begin{equation*} V_i(\color{bcYellow} \tau_i \color{black}) = \alpha^\alpha (1 - \alpha)^{1 - \alpha} \frac{I_i(\color{bcYellow} \tau_i \color{black})}{P_i(\color{bcYellow} \tau_i \color{black})^\alpha} \end{equation*}\]
\[\begin{equation*} \Pi_i(\color{bcYellow} \tau_i \color{black}, \tau_j) = \int_{v_i} \Pi_i(p_i(\nu_i)) = (p_i^\star - w_i) \left( x_{ii}^\star(\color{bcYellow} \tau_i \color{black}) + x_{ji}^\star(\tau_j) \right) \end{equation*}\]
Primitives
Domestic Conflict of Interest
\[\begin{equation*} V_i(\tau_i) = \alpha^\alpha (1 - \alpha)^{1 - \alpha} \frac{I_i(\tau_i)}{P_i(\tau_i)^\alpha} \end{equation*}\]
\[\begin{equation*} \Pi_i(\tau_i, \color{bcYellow} \tau_j \color{black}) = \int_{v_i} \Pi_i(p_i(\nu_i)) = (p_i^\star - w_i) \left( x_{ii}^\star(\tau_i) + x_{ji}^\star(\color{bcYellow} \tau_j \color{black}) \right) \end{equation*}\]
Consumption
\[\begin{equation*} \begin{split} \max_{X_i, Y_i} & \quad X_i^\alpha Y_i^{1 - \alpha} \\ \text{subject to} & \quad P_i(\tau_i) X_i + Y_i \leq I_i(\tau_i) \end{split} \end{equation*}\]
\[\begin{equation} \label{eq:CES} X_i = \left( \int_{\nu_i} x_{ii}(\nu_i)^{\frac{\sigma - 1}{\sigma}} d \nu_i + \int_{\nu_j} x_{ij}(\nu_j)^{\frac{\sigma - 1}{\sigma}} d \nu_j \right)^{\frac{\sigma}{\sigma - 1}} \end{equation}\]
\[\begin{equation} \label{eq:P} P_i = \left( \int_{\nu_i} p_{ii}(\nu_i)^{1-\sigma} d \nu_i + \int_{\nu_j} p_{ij}(\nu_j)^{1-\sigma} d \nu_j \right)^{\frac{1}{1 - \sigma}} \end{equation}\]
Tariffs and Prices
\[ p_{ij} = \tau_i p_j(\nu_j) \]
Production
\[\begin{equation} \label{eq:Pi} \begin{split} \max_{p_i(\nu_i)} & \quad \Pi_i \left( p_i(\nu_i) \right) = \left( p_i(\nu_i) - w_i \right) \left( x_{ii}^\star(\nu_i) + x_{ji}^\star(\nu_i) \right) \\ \text{subject to} & \quad x_{ii}^\star(\nu_i) = p_i(\nu_i)^{-\sigma} P_i^{\sigma - 1} \alpha I_i \\ & \quad x_{ji}^\star(\nu_i) = (\tau_j p_i(\nu_i))^{-\sigma} P_j^{\sigma - 1} \alpha I_i \end{split} \end{equation}\]
Tariff Revenue
\[\begin{equation} \label{eq:revenue} r_i(\tau_i) = (\tau_i - 1) p_j x_{ij}^\star(\tau_i p_j) \end{equation}\]
Definition 2: An economic equilibrium is a function \(h : \left\{ \bm{\tau} \right\} \rightarrow \left\{ \bm{w}, \bm{L} \right\}\) mapping trade policy choices to endogenous wages and labor allocations such that goods and factor markets clear given equilibrium prices and corresponding demands.
Assumption 2: \[ \alpha < \frac{2}{3} \frac{\sigma}{\sigma - 1} \]
Proposition 1: If Assumption 2 is satisfied, then a unique economic equilibrium exists with \(L_i^x, L_i^y, L_j^x, L_j^y > 0\) and \(w_i = w_j = 1\) for all \(\bm{\tau} \in [1, \bar{\tau}]^2\).
Government Preferences (I)
\[\begin{equation} \label{eq:G} G_i(\bm{\tau} | \color{bcYellow} a_i \color{black}) = \color{bcYellow} a_i \color{black} V_i(\tau_i) + \Pi_i(\tau_i, \tau_j) \end{equation}\]
\(\color{bcYellow} a_i \color{black}\) is measure of government’s sensitivity to interests of consumers
Assumption 3: \(a_i \in (\ubar{a}, \bar{a}]\) for all \(i\) where \(\ubar{a}\) is a positive constant defined in Appendix C and \(\bar{a}\) is an arbitrarily large but finite number.
Lemma 1: \(\tau_i^\star(a_i) \in (1, \bar{\tau})\)
Definition 3: A noncooperative equilibrium is a pair of policies \(\left\{ \tau_i^\star(a_i), \tau_j^\star(a_j) \right\}\) such that \[ \tau_i^\star(a_i) = \argmax_{\tau_i \in [1, \bar{\tau}]} G_i(\tau_i; a_i) \] and \[ \tau_j^\star(a_j) = \argmax_{\tau_j \in [1, \bar{\tau}]} G_j(\tau_j; a_j) \]
Optimal Puppet Regimes
\[ \max_{\color{bcYellow} a \color{black} \in (\ubar{a}, \bar{a}]} G_i( \tau_i^\star(a_i), \tau_j^\star(\color{bcYellow} a \color{black}) | a_i ) \]
Proposition 2: \(a^\star = \bar{a}\)
War Outcomes
\[\begin{equation*} \label{eq:Gbar} \overline{G}_i(a_i) = G_i(\tau_i^\star(a_i), \tau_j^\star(\color{bcYellow} \bar{a} \color{black}); a_i) \end{equation*}\]
\[\begin{equation*} \label{eq:Gubar} \ubar{G}_i(a_i, a_j) = G_i(\tau_i^\star(\color{bcYellow} \bar{a} \color{black}), \tau_j^\star(a_j); a_i) \end{equation*}\]
Conflicts of Interest
\[\begin{equation} \label{eq:Gamma} \Gamma_i(a_i, a_j) = \overline{G}_i(a_i) - \underline{G}_i(a_i, a_j) \end{equation}\]
Proposition 3: \(\Gamma_i(a_i, a_j)\) is decreasing in \(a_i\) and \(a_j\)
\[\begin{equation*} \overline{G}_i(a_i) = G_i(\tau_i^\star(a_i), \tau_j^\star(\bar{a}); a_i) \end{equation*}\]
\[\begin{equation*} \ubar{G}_i(a_i, a_j) = G_i(\tau_i^\star(\bar{a}), \tau_j^\star(a_j); a_i) \end{equation*}\]
War Values
\[\begin{align*} \hat{G}_j(a_j, a_i) &= \underbrace{(1 - \rho) \bar{G}_j(a_j) + \rho \ubar{G}_j(a_j, a_i)}_{W_j(a_j, a_i)} - c_j \\ &= (1 - \rho) \Gamma_j(a_j, a_i) + \ubar{G}_j(a_j, a_i) - c_j \end{align*}\]
Lemma 4: \[ \omega^\star(\tilde{\bm{\tau}}; a_j, c_j, \rho) = \begin{cases} \text{war} & \text{if } \hat{G}_j(a_j, a_i) \geq G_j(\tilde{\bm{\tau}}; a_j) \\ \text{accept} & \text{otherwise} \end{cases} \]
Lemma 5: If \[ W_j(a_j, a_i) - G_j(\tau_j^\star(\bar{a}), \tau_i^\star(a_i); a_j) = \Gamma_j(a_j, a_i) \leq \ubar{c}_j \] then \[ \tilde{\bm{\tau}}^\star = \left\{ \tau_i^\star(a_i), \tau_i^\star(\bar{a}) \right\} \] and \[ \omega^\star(\tau_i^\star(a_i), \tau_j^\star(\bar{a}); a_j, c_j, \rho) = \text{accept} \] for all \(c_j \in [\ubar{c}_j, \bar{c}_j]\).
Lemma 6 (Zone of Peace): For every \(\ubar{c}_j \in [ 0, \bar{c}_j )\) there exists a \(a_j(\ubar{c}_j, a_i)\) such that for all \(a_j \in [ a_j(\ubar{c}_j, a_i), \bar{a} )\) the probability of war is 0.
Proposition 4 (Liberal Peace): \(a_j(\ubar{c}_j, a_i)\) is weakly decreasing in \(a_i\).
Proposition 5 (Liberal Trade): If \(a_j \geq a_j(\ubar{c}_j, a_i)\) then trade in manufactured goods is increasing in \(a_i\).
Probability of War
\[\begin{equation} \label{eq:prwar} \begin{split} \text{Pr} \left\{ c_j \leq W_j(a_j, a_i) - G_j(\tilde{\bm{\tau}}; a_j) | \tilde{\bm{\tau}}, a_i, a_j \right\} = F \left( W_j(a_j, a_i) - G_j(\tilde{\bm{\tau}}; a_j) \right) \end{split} \end{equation}\]
War Value (\(i\))
\[ \hat{G}_i(a_i, a_j) = \rho \Gamma_i(a_i, a_j) + \ubar{G}_i(a_i, a_j) - c_i \]
Induced Objective Function
\[\begin{equation} \label{eq:Gtildei} \begin{split} \tilde{G}_i \left( \tilde{\bm{\tau}}; a_i, c_i, \rho \right) = \underbrace{\left( 1 - F \left( W_j(a_j, a_i) - G_j( \tilde{\bm{\tau}}; a_j ) \right) \right) \left( G_i( \tilde{\bm{\tau}}; a_i ) \right)}_{\neg \text{war}} + \\ \underbrace{F \left( W_j(a_j, a_i) - G_j(\tilde{\bm{\tau}}; a_j) \right) \left( \hat{G}_i(a_i, a_j) \right)}_{\text{war}} \end{split} \end{equation}\]
Proposition 6 (Power and Protection): If \(a_j < a_j(\ubar{c}_j, a_i)\) and peace prevails, government \(i\)’s trade barriers are increasing in its military strength, i.e. \(\tilde{\tau}_i^\star(a_i, c_i, \rho)\) is increasing in \(\rho\).
Commercial Peace: Globalization or Liberalism?
Shadow of Power in International Political Economy
Preferences, Institutions, and the Democratic Peace
Conflicts of Interest versus Bargaining Failures
Title Slide Image Credit: Charles Severin (American lithographer, born between 1808-1820; died ca. 1860). 1853 (creation). The American Expedition, Under Commodore Perry, Landing in Japan, July 14, 1853, Overall view. visual works; prints (visual works); planographic prints; lithographs. https://library.artstor.org/asset/SS35100_35100_35234600
Sections
Quick Links
Angell, Norman. 1911. The great illusion: a study of the relation of military power in nations to their economic and social advantage. McClelland; Goodchild.
Antràs, Pol, and Gerard Padró i Miquel. 2011. “Foreign influence and welfare.” Journal of International Economics 84 (2): 135–48.
Bagwell, Kyle, and Robert W. Staiger. 1999. “An economic theory of GATT.” American Economic Review 89 (1): 215–48.
Barbieri, Katherine, and Jack S Levy. 1999. “Sleeping with the enemy: The impact of war on trade.” Journal of Peace Research 36 (4): 463–79.
Benson, Brett V, and Emerson M S Niou. 2007. “Economic Interdependence and Peace: A Game-Theoretic Analysis.” Journal of East Asian Studies 7 (1): 35–59.
Bils, Peter, and William Spaniel. 2017. “Policy bargaining and militarized conflict.” Journal of Theoretical Politics 29 (4): 647–78.
Bueno De Mesquita, Bruce, Alastair Smith, Randolph M Siverson, and James D Morrow. 2003. The logic of political survival. MIT press.
Carroll, Robert J. 2018. “War and Peace in the Marketplace.”
Chatagnier, J Tyson, and Kerim Can Kavakli. 2015. “From Economic Competition to Military Combat: Export Similarity and International Conflict.” Journal of Conflict Resolution, 1–27.
Coe, Andrew J. n.d. “The Modern Economic Peace.”
Copeland, Dale. 2014. Economic Interdependence and War. Princeton, NJ: Princeton University Press.
Fearon, James D. 1995. “Rationalist explanations for war.” International Organization 49 (03): 379–414.
———. 2008. “A simple political economy of relations among democracies and autocracies.”
Fey, Mark, and Brenton Kenkel. 2019. “Is an Ultimatum the Last Word on Crisis Bargaining?” Journal of Politics.
Fordham, Benjamin O. 1998. “Economic Interests, Party, and Ideology in Early Cold War Era U.S. Foreign Policy.” International Organization 52 (2): 359–96.
———. 2019. “The Domestic Politics of World Power: Explaining Debates over the United States Battleship Fleet, 1890-91.” International Organization, 1–34.
Gartzke, Erik. 2007. “The capitalist peace.” American Journal of Political Science 51 (1): 166–91.
Gartzke, Erik, Quan Li, and Charles Boehmer. 2001. “Investing in the peace: Economic interdependence and international conflict.” International Organization 55 (02): 391–438.
Gawande, Kishore, Pravin Krishna, and Marcelo Olarreaga. 2009. “What governments maximize and why: the view from trade.” International Organization 63 (03): 491–532.
———. 2015. “A Political-Economic Account of Global Tariffs.” Economics & Politics 27 (2): 204–33.
———. 2012. “Lobbying Competition over Trade Policy.” International Economic Review 53 (1): 115–32.
Gerschenkron, Alexander. 1943. Bread and Democracy in Germany. Cornell University Press.
Goldberg, Pinelopi Koujianou, and Giovanni Maggi. 1999. “Protection for Sale: An Empirical Investigation.” American Economic Review, 1135–55.
Gourevitch, Peter. 1978. “The Second Image Reversed: The International Sources of Domestic Politics.” International Organization 32 (4): 881–912.
Gowa, Joanne, and Edward D Mansfield. 1993. “Power Politics and International Trade.” The American Political Science Review 87 (2): 408–20.
Grossman, Gene M, and Elhanan Helpman. 1994. “Protection for Sale.” The American Economic Review, 833–50.
———. 1996. “Electoral Competition and Special Interest Politics.” Review of Economic Studies 63: 265–86.
Hegre, Håvard, John R Oneal, and Bruce Russett. 2010. “Trade does promote peace: New simultaneous estimates of the reciprocal effects of trade and conflict.” Journal of Peace Research 47 (6): 763–74.
Hirschman, Albert O. 1945. National power and the structure of foreign trade. Univ of California Press.
Jackson, Matthew O, and Massimo Morelli. 2007. “Political bias and war.” The American Economic Review, 1353–73.
Kleinberg, Katja B, and Benjamin O Fordham. 2013. “The Domestic Politics of Trade and Conflict.” International Studies Quarterly 57 (3): 605–19.
Kono, Daniel Yuichi. 2008. “Democracy and Trade Discrimination.” Journal of Politics 70 (4): 942–55.
Krasner, Stephen D. 1976. “State power and the structure of international trade.” World Politics 28 (03): 317–47.
Krugman, Paul. 1980. “Scale Economies, Product Differentiation, and the Pattern of Trade.” American Economic Review 70 (5): 950–59.
Lake, David A. 1992. “Powerful pacifists: democratic states and war.” American Political Science Review 86 (01): 24–37.
Mansfield, Edward D, Helen V Milner, and B Peter Rosendorff. 2000. “Free to trade: Democracies, autocracies, and international trade.” American Political Science Review 94 (02): 305–21.
Mansfield, Edward D, and Jon C Pevehouse. 2000. “Trade blocs, trade flows, and international conflict.” International Organization 54 (04): 775–808.
Mayer, Wolfgang. 1984. “Endogenous Tariff Formation.” The American Economic Review 74 (5): 970–85.
McDonald, Patrick J. 2004. “Peace through Trade or Free Trade?” Journal of Conflict Resolution 48 (4): 547–72.
McDonald, Patrick J, and Kevin Sweeney. 2007. “The Achilles’ Heel of Liberal IR Theory?: Globalization and Conflict in the Pre-World War I Era.” World Politics 59 (03): 370–403.
Milner, Helen V, and Keiko Kubota. 2005. “Why the move to free trade? Democracy and trade policy in the developing countries.” International Organization 59 (01): 107–43.
Mitra, Devashish, Dimitrios D. Thomakos, and Mehmet Ulubasoglu. 2006. “Can we obtain realistic parameter estimates for the ’protection for sale’ model?” Canadian Journal of Economics 39 (1): 187–210.
Moravcsik, Andrew. 1997. “Taking Preferences Seriously: A Liberal Theory of International Politics.” International Organization 51 (4): 513–53.
Morrow, James D. 1999. “How could trade affect conflict?” Journal of Peace Research 36 (4): 481–89.
Oneal, John R, and Bruce M Russet. 1997. “The classical liberals were right: Democracy, interdependence, and conflict, 1950–1985.” International Studies Quarterly 41 (2): 267–93.
Oneal, John R, and Bruce Russett. 1999. “The Kantian peace: The pacific benefits of democracy, interdependence, and international organizations, 1885–1992.” World Politics 52 (01): 1–37.
Ossa, Ralph. 2011. “A " New Trade " Theory of GATT/WTO Negotiations.” Journal of Political Economy 119 (1): 122–52.
———. 2012. “Profits in the "New Trade" Approach to Trade Negotiations.” American Economic Review: Papers & Proceedings 102 (3): 466–69.
———. 2014. “Trade wars and trade talks with data.” The American Economic Review 104 (12): 4104–46.
Philippe, Martin, Thierry Mayer, and Mathias Thoenig. 2008. “Make Trade Not War?” Review of Economic Studies 75 (3): 865–900.
Polachek, Solomon William. 1980. “Conflict and Trade.” Journal of Conflict Resolution 24 (1): 55–78.
Pollins, Brian M. 1989a. “Conflict, cooperation, and commerce: The effect of international political interactions on bilateral trade flows.” American Journal of Political Science, 737–61.
———. 1989b. “Does Trade Still Follow the Flag?” American Political Science Review 83 (02): 465–80.
Reiter, Dan. 2017. “Is Democracy a Cause of Peace?” In Oxford Research Encyclopedia of Politics. Oxford University Press.
Schultz, Kenneth A. 1998. “Domestic opposition and signaling in international crises.” American Political Science Review 92 (04): 829–44.
———. 2001. Democracy and Coercive Diplomacy. New York: Cambridge University Press.
Snyder, Jack. 1993. Myths of empire: Domestic politics and international relations. Cornell University Press.
Venables, Anthony J. 1987. “Trade and Trade Policy with Differentiated Products: A Chamberlinian-Ricardian Model.” The Economic Journal 97 (387): 700–717.