\[ \require{color} \definecolor{bcOrange}{RGB}{189,97,33} \definecolor{bcYellow}{RGB}{189,142,40} \newcommand\iddots{\mathinner{ \kern1mu\raise1pt{.} \kern2mu\raise4pt{.} \kern2mu\raise7pt{\Rule{0pt}{7pt}{0pt}.} \kern1mu }} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \newcommand{\bm}[1]{\boldsymbol{\mathbf{#1}}} \newcommand{\ubar}[1]{\underline{#1}} \]

Trade Policy in the Shadow of Power

Quantifying Military Coercion in the International System

9 April 2020

Brendan Cooley

Ph.D. Candidate

Princeton University

bcooley (at) princeton.edu

These slides available at brendancooley.com/tpsp

Introduction

Power and Preferences

“A has power over B to the extent that he can get B to do something that B would not otherwise do.

  • Dahl (1957)

Power in Anarchy

  • Anarchy: no higher authority to compel states to resolve disputes peacefully
  • Anarchy \(\implies\) powerful governments can impose policies on others by force
  • Bargaining critique: policies adjust to reflect shadow of power
    • Brito and Intrilagator (1985), Fearon (1995), Art (1996); Powell (1999)

Detecting the Exercise of Power: An Inference Problem

  • Dahl: What would B do in the absence of A’s power?
  • Do observed policies reflect preferences of the governments that adopted them or constraints of anarchy?

Trade Policy and Gunboat Diplomacy

What Do Governments Want?

  • Protectionism at home (Grossman and Helpman 1994; Gawande, Krishna, and Olarreaga 2009)
    • Domestic distributional conflict: Mayer (1984), Rogowski (1987); Grossman and Helpman (1994)
    • Fiscal capacity: Rodrik (2008), Queralt (2015)
  • Openness abroad (Grossman 2016)
    • Market access externalities: Ossa (2011), Ossa (2012)
    • Lobbying and Trade Policy: Firms pressure governments to negotiate reductions in trade barriers abroad (Osgood 2016; Kim 2017)

Conflicts of Interest and Gunboat Diplomacy

  • Powerful governments impose openness on weaker counterparts
    • Viner (1948), Findlay and O’Rourke (2007)
  • Peacetime regimes: empire, hegemony, and hierarchy
    • Gallagher and Robinson (1953), Krasner (1976), Gilpin (1981), Kindleberger (1986), Lake (2007)
    • Economic effects: Berger et al. (2013)

Does Trade Policy Matter?

  • Tariffs small, aggregate policy-induced trade frictions large
    • ~order of magnitude larger than tariffs (Cooley 2019) (barriers)
  • Welfare effects of trade frictions
    • Autor, Dorn, and Hanson (2013), Costinot and Rodríguez-Clare (2015), Goldberg and Pavcnik (2016)

Anarchy and Inference: Approach

A Coercive International Political Economy

\[ \left\{ \bm{\theta}, \bm{M} \right\} \rightarrow \bm{\tau} \]

  • Observables
    • \(\bm{M}\) – governments’ military endowment (expenditure)
    • \(\bm{\tau}\) – governments’ trade policies
  • Unobservables (\(\bm{\theta}\))
    • \(\bm{v}\) – governments’ preferences for protectionism
    • \(\gamma\) – returns to military force in coercive capacity
    • \(\alpha\) – geographic loss of strength gradient (Boulding 1962; Bruce Bueno de Mesquita 1980; Diehl 1985; Lemke 1995; Gartzke and Braithwaite 2011; Markowitz and Fariss 2013)

Estimation: \(\left\{ \bm{\tau}, \bm{M} \right\} \rightarrow \tilde{\bm{\theta}}\)

Counterfactuals: \(\left\{ \bm{\theta}^\prime, \bm{M}^\prime \right\} \rightarrow \bm{\tau}^\prime\)

  • Shadow of power
    • Effect of changing military endowments on trade policy
  • Liberal/commercial peace
    • Effect of changing preferences for openness on probability of war

Results: Preview

Economic Consequences of Coercion: Increases value of global trade 63 percent

Results: Preview

Economic Consequences of Coercion: Increases value of global trade 63 percent

Data

Economic Effects of Endogenous Trade Frictions

Choice variables

\[ \bm{\tau} = \begin{pmatrix} \tau_{11} & \cdots & \cdots & \cdots & \tau_{1N} \\ \vdots & \ddots & \vdots & \iddots & \vdots \\ \vdots & \cdots & \tau_{ij} & \cdots & \vdots \\ \vdots & \iddots & \vdots & \ddots & \vdots \\ \tau_{N1} & \cdots & \cdots & \cdots & \tau_{NN} \end{pmatrix} \]

Economy

\[ h(\bm{\tau}; \bm{Z}_h, \bm{\theta}_h) \rightarrow \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix} = \bm{w} \]

Coercive International Political Economy: Data

Sample Countries

War Costs

\[ c_{ij} \sim F \left( \bm{\theta}_m; \bm{Z}_m \right) \]

  • \(c_{ij}\) – cost government \(i\) pays to attack government \(j\)
  • \(\bm{Z}_m\) – observable dyadic features
    • \(M_{i} / M_{j}\) – military expenditure ratio (data)
    • \(W_{ij}\) – centroid-centroid distance between \(i\) and \(j\)
  • \(\bm{\theta}_m\) – estimand

Reduced Form Evidence

Model

Model (Overview)

  • Governments indexed \(i \in \left\{ 1, ..., N \right\}\)

Sequence

  1. (\(\tilde{\bm{\tau}}\)) Governments make trade policy announcements
  2. Wars
    • Winners impose free trade on conquered governments
  3. (\(h(\bm{\tau})\)) Economic consequences of announced/imposed trade policies

Payoffs

\[ V_i \left( h(\bm{\tau}); \color{bcOrange} v_i \color{black} \right) \]

  • \(\color{bcOrange} v_i\) - latent preference for protectionist policies

Government Objective

Wars

  • Directed dyad-specific war costs held as private information to prospective attacker
    • \(c_{ji}\) – cost \(j\) incurs to invade \(i\)
  • Wars fought to impose free trade on target

\[ \bm{\tau}_i^\prime = \left( 1, \dots, 1 \right) = \bm{1}_i \]

Conquest Values

  • \(V_j(\bm{1}_i; \tilde{\bm{\tau}}_{-i})\)\(j\)’s value for imposing free trade on \(i\)

Peace Condition

\[ V_j \left( \bm{1}_i, \tilde{\bm{\tau}}_{-i}; v_j \right) - c_{ji} \leq V_j \left( \tilde{\bm{\tau}}, v_j \right) \]

Probability of Peace

\[ \text{Pr}\left( \frac{1}{c_{ji}} \leq \frac{1}{V_j \left( \bm{1}_i, \tilde{\bm{\tau}}_{-i}; v_j \right) - V_j \left( \tilde{\bm{\tau}}, v_j \right)} \right) = F_{ji} \left( \frac{1}{V_j \left( \bm{1}_i, \tilde{\bm{\tau}}_{-i}; v_j \right) - V_j \left( \tilde{\bm{\tau}}, v_j \right)} \right) \]

Cost Distribution, Functional Form

Optimal Policies

  • Risk-return tradeoff: ideal policies balance policy optimality against threat of war
    • Lower tariffs on goods from countries that pose military threats

Best Response

\[ \max_{\bm{\tau}_i} \quad \underbrace{\hat{H}_i(\hat{\tilde{\bm{\tau}}}; \bm{Z}_m, \bm{\theta}_m) \hat{V}_i(\hat{\tilde{\bm{\tau}}})}_{\text{peace}} + \underbrace{\left( 1 - \hat{H}_i(\hat{\tilde{\bm{\tau}}}; \bm{Z}_m, \bm{\theta}_m) \right) \hat{V}_i(\bm{1}_i; \hat{\tilde{\bm{\tau}}}_{-i})}_{\text{war}} \]

Equilibrium (in changes)

\[ \bm{\tau}^\star(\bm{\theta}_m, \bm{Z}_m) \]

  • \(\bm{\theta}_m = \left( \bm{v}, \gamma, \alpha_1, \alpha_2 \right)\) – estimand
    • \(\bm{v}\) – revenue thresholds (preference for protectionism)
    • \(\gamma\) – returns to military advantage (if \(\gamma > 0\))
    • \(\alpha_1\) – loss of strength gradient (if \(\alpha_1 > 0\))
    • \(\alpha_2\) – returns to gdp (if \(\alpha_2 > 0\))
  • \(\bm{Z}_m\) – data

Calibration and Identification

Estimation

Estimation

Measurement Error: \(\tau_{ij} = \tau_{ij}^\star(\bm{\theta}_m, \bm{Z}) + \epsilon_{ij}\)

Moment Estimator

\[ \min_{\bm{\theta}_m} \quad \sum_i \sum_j \left( \epsilon_{ij}(\bm{\theta}_m, \bm{Z}) \right)^2 \]

Mathematical Program with Equilibrium Constraints (MPEC) (Su and Judd 2012)

\[\begin{equation*} \begin{split} \min_{ \bm{\theta}_m, \hat{\tilde{\bm{\tau}}}, \hat{\bm{w}}, \hat{\bm{w}}^\prime, \bm{\lambda} } & \quad \sum_i \sum_j \left( \epsilon_{ij} \right)^2 & \quad \text{} \\ \text{subject to} & \quad \nabla_{\hat{\tilde{\bm{\tau}}}_i} \mathcal{L}_i(\hat{\tilde{\bm{\tau}}}, \hat{\bm{w}}, \bm{\lambda}_i; \bm{\theta}_m) = \bm{0} \text{ for all } i & \quad \text{Policy Optimality} \\ & \quad \hat{\bm{w}} = \hat{h} \left( \hat{\tilde{\bm{\tau}}} \right) & \quad \text{GE (Proposed Policies)} \\ & \quad \hat{\bm{w}}_i^\prime = \hat{h} \left( \bm{1}_i, \hat{\tilde{\bm{\tau}}}_{-i} \right) \text{ for all } i & \quad \text{GE (Imposed Policies)} \end{split} \end{equation*}\]

Best Response MPEC

Uncertainty: Nonparametric bootstrap (sample policy estimates (\(\tau_{ij}\)) and recompute \(\tilde{\bm{\theta}}_m\))

Results

Parameters

Model Fit     Errors     Non-Coercive Model     Non-Coercive Model Fit

War Costs

Conquest Values

War Probabilities

Counterfactuals

Counterfactuals (Overview)

Counterfactual Policies \(\tilde{\bm{\tau}}^\star(\bm{\theta}_m^\prime; \bm{Z}_m^\prime)\)

  • \(\bm{\theta}_m^\prime\) – counterfactual parameters (e.g. preferences)
  • \(\bm{Z}_m^\prime\) – counterfactual data (e.g. military expenditure)

Economic Effects of Counterfactual Policies

\[ h \left( \tilde{\bm{\tau}}^\star(\bm{\theta}_m^\prime; \bm{Z}_m^\prime) \right) \]

Coercion-Free World: Policies

Coercion-Free World: Policies

Coercion-Free World: Trade

  • Moving from pacifism to 2011 military expenditure levels \(\rightarrow\) 63 percent increase in value of world trade

Coercion-Free World: Trade

  • Moving from pacifism to 2011 military expenditure levels \(\rightarrow\) 63 percent increase in value of world trade

Coercion-Free World: Welfare

Conclusions

Conclusion

Shadow of Power in International Political Economy

  • Quantify governments’ welfare under counterfactual imposition of free trade abroad
    • Use difference between factual welfare and welfare under this counterfactual to identify parameters governing technology of coercion in international relations
  • Results
    • Returns to military advantage
    • Loss of strength gradient

The Persistence of Hegemony/Hierarchy in International Relations

  • Power politics of international trade regime
    • Hegemon compels openness from recalcitrant followers
    • Gallagher and Robinson (1953), Krasner (1976), Gilpin (1981), Kindleberger (1986), Lake (2013)
    • Largely theoretical literature due to difficulty in constructing counterfactual
  • What policies would governments adopt in anarchy’s absence?
    • Significantly more protectionist world

Thank You

Thank You

brendancooley.com

[email protected]

Appendix: Introduction

Bargaining, Trade, and War

Institutionalized Bargaining

  • Models of GATT/WTO: reciprocity and nondiscriminination
    • Grossman and Helpman (1995), Maggi (1999), Bagwell and Staiger (1999)
  • Institutions and incentive compatibility: war as an outside option (Powell 1994)

Trade as Means

  • Governments pursue “political” ends (e.g. security), trade used as coercive instrument
    • Hirschman (1945), Gowa and Mansfield (1993), Martin, Mayer, and Thoenig (2012), Seitz, Tarasov, and Zakharenko (2015)
  • Security and power are themselves means to achieve other ends

Power and Exchange

  • Prices and power in the marketplace
    • Skaperdas (2001), Piccione and Rubinstein (2007), Garfinkel, Skaperdas, and Syropoulos (2011), Carroll (2018)
  • Trade frictions as choice variable here

Appendix: Data

Estimated Trade Frictions

Back

Economy (Consumption)

Consumer’s Problem

\[\begin{equation*} \begin{split} \max & \quad U_i = Q_i^{\nu_i} S_i^{1 - \nu_i} \\ \text{subject to} & \quad P_i Q_i + P_i^s S_i \leq w_i L_i \end{split} \end{equation*}\]

CES Preferences over Tradable Varieties

\[ Q_i = \left( \int_{[0,1]} \alpha_{h(\omega)}^{\frac{1}{\sigma}} q_i(\omega)^{\frac{\sigma - 1}{\sigma}} d \omega \right)^{\frac{\sigma}{\sigma - 1}} \]

Tradable Price Index

\[ P_i = \left( \int_{[0,1]} \alpha_{h(\omega)} p_i(\omega)^{1 - \sigma} d \omega \right)^{\frac{1}{1 - \sigma}} \]

Expenditure on Tradables

\[ E_i^q = \nu_i I_i + D_i = P_i Q_i^\star \]

Economy (Production)

Costs

\[\begin{equation} \label{eq:c} c_i = w_i^{1 - \beta} P_i^{\beta} \end{equation}\]

  • \(w_i\) - cost of labor
  • \(P_i\) - cost of composite intermediate good
    • equivalent to composite consumption good

\[ E_i^x = \beta X_i \]

Local Prices

\[ p_{ii}(\omega) = \frac{c_i}{z_i(\omega)} \]

Technology (Fréchet)

\[ F_i(z) = \text{Pr} \left\{ z_i(\omega) \leq z \right\} = \exp \left\{ - T_i z^{-\theta} \right\} \]

Economy (Equilibrium)

Total Expenditure on Tradables

\[ X_i = \underbrace{E_i^q + E_i^x}_{E_i} - D_i \]

Trade Shares

\[ \Omega_{ij}^\star = \left\{ \omega \in [0,1] \left. \right\vert p_{ij}(\omega) \leq \min_{k \neq j} \left\{ p_{ik} \right\} \right\} \]

\[ \lambda_{ij}(\boldsymbol{w}) = \frac{1}{E_i} \int_{\Omega_{ij}^\star} p_{ij}(\omega) q_i \left( p_{ij} (\omega) \right) d \omega \]

Market Clearing

\[ X_i = \sum_{j=1}^N \lambda_{ji}(\boldsymbol{w}) E_j \]

Economy (Equilibrium in Changes)

\[ \hat{r}_i = \frac{1}{r_i} \left( E_i \hat{E}_i(\hat{\bm{w}}) - \sum_j X_{ij}^{\text{cif}} \hat{X}_{ij}^{\text{cif}}(\hat{\bm{w}}) \right) \] \[ \hat{w}_i = \frac{1}{\nu_i w_i L_i} \left( \sum_j \left( (1 - \beta) X_{ji}^{\text{cif}} \hat{X}_{ji}^{\text{cif}}(\hat{\bm{w}}) \right) + (1 - \nu_i) r_i \hat{r}_i(\hat{\bm{w}}) \right) \] \[ \hat{E}_i(\hat{\bm{w}}) = \frac{1}{E_i} \left( E_i^q \hat{E}_i^q(\hat{\bm{w}}) + E_i^x \hat{E}_i^x(\hat{\bm{w}}) \right) \] \[ \hat{x}_{ij}(\hat{\bm{w}}) = \left( \hat{\tau}_{ij} \hat{w}_j^{1 - \beta} \hat{P}_j(\hat{\bm{w}})^\beta \right)^{-\theta} \hat{P}_i(\hat{\bm{w}})^{\theta} \] \[ \hat{P}_i(\hat{\bm{w}}) = \left( \sum_j x_{ij} \left( \hat{\tau}_{ij} \hat{w}_j^{1 - \beta} \hat{P}_j(\hat{\bm{w}})^\beta \right)^{-\theta} \right)^{-\frac{1}{\theta}} \] \[ 1 = \sum_i y_i \hat{w}_i \]

Back

Economy (Calibration I)

  • Trade Flows: BACI
  • National Accounts: OECD and WIOD

Parameters

\[ \bm{\theta}_h = \left( \bm{\nu}, \beta, \theta \right) \]

  • \(\nu_i\) – share of consumer expenditure spent on tradables (World Bank ICP)
  • \(\beta\) – share of intermediate goods in imports (WIOD)
    • Average across countries in sample (0.86)
  • \(\theta\) – trade elasticity
    • Set to 6 (Head and Mayer 2014)

Economy (Calibration II)

Deficits (Dekle, Eaton, and Kortum 2007)

  • \(\bm{D}\) – trade deficits
  • Equilibrium in changes \[ \hat{h}(\hat{\bm{\tau}}, \hat{\bm{D}}; \bm{\theta}_h) \]
  • Purge deficits before analysis \[ \hat{h}(\hat{\bm{\tau}}, \bm{0}; \bm{\theta}_h) \rightarrow \hat{\bm{w}}_{-D} \]
  • Recompute associated trade flows, price levels, etc

Back

Military Expenditure

Back

Reduced Form Evidence (Interpretive Model)

Bilateral Nash Bargaining over Trade Policy

\[\begin{equation} \begin{split} x^\star \in \argmax_x & \quad \left( u_1(x) - w_1(M_1 / M_2) \right) \left( u_2(x) - w_2(M_2 / M_1) \right) \\ \text{subject to} & \quad u_1(x) \geq w_1(M_1 / M_2) \\ & \quad u_2(x) \geq w_2(M_2 / M_1) . \end{split} \end{equation}\]

Result: Government 1’s utility increasing in \(M_1\)

Empirical Analogue

\[ \frac{u_1(x^\star; M_1, M_2)}{u_1(1)} \iff \frac{ V_i \left( h(\bm{\tau}) \right) }{ V_i \left( h(\bm{1}_j; \bm{\tau}_{-j}) \right) } \]

Empirical Conquest Value: \(V_i \left( h(\bm{1}_j; \bm{\tau}_{-j}) \right)\)

Reduced Form Evidence (Data)

Reduced Form Evidence (Data)

Inverse Conquest Values and Military Capability Ratios
Base Base (Attacker FE) Loss of Strength Loss of Strength (Attacker FE)
Log Mil Capability Ratio 0.016*** 0.033*** 0.026 0.045
(0.004) (0.004) (0.052) (0.039)
Log Distance 0.003 0.002
(0.010) (0.008)
(Log Mil Capability Ratio) X (Log Distance) -0.001 -0.001
(0.006) (0.004)
Num.Obs. 56 56 56 56
R2 0.247 0.676 0.249 0.677
R2 Adj. 0.233 0.621 0.205 0.605
F 17.720 12.251 5.739 9.421
Attacker FE?
* p < 0.1, ** p < 0.05, *** p < 0.01

Back

Appendix: Model

Government Objective

\[ h(\bm{\tau}) \rightarrow \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix} = \color{bcOrange} \bm{w} \]


  • \(X_{ij}(\color{bcOrange} \bm{w} \color{black})\): \(i\)’s imports of goods from \(j\)

Revenues from Policy Distortions

\[ r_i(\color{bcOrange} \bm{w} \color{black}; v_i) = \sum_j (\tau_{ij} - v_i) X_{ij}(\color{bcOrange} \bm{w} \color{black}) \]

Government Objective

\[ h(\bm{\tau}) \rightarrow \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix} = \bm{w} \]


  • \(X_{ij}(\bm{w})\): \(i\)’s imports of goods from \(j\)

Revenues from Policy Distortions

\[ r_i(\bm{w}; \color{bcOrange} v_i \color{black}) = \sum_{j \neq i} (\tau_{ij} - \color{bcOrange} v_i \color{black}) X_{ij}(\bm{w}) \]

  • \(\color{bcOrange} v_i \color{black} > 0\) controls \(i\)’s preferences over the level of protection

Adjusted Consumer Income: \(\tilde{Y}_i(\bm{w}) = w_i L_i + r_i(\bm{w}; \color{bcOrange} v_i \color{black})\)

Indirect Utility

\[ V_i \left( h(\bm{\tau}); \color{bcOrange} v_i \color{black} \right) \]

Back

Equilibrium in Changes

Peace Condition

\[ \hat{c}_{ji}^{-1} \leq \left( \hat{V}_j \left( \bm{1}_i; \hat{\tilde{\bm{\tau}}}_{-i} \right) - \hat{V}_j \left( \hat{\tilde{\bm{\tau}}} \right) \right)^{-1} \]

Objective Function

\[ \hat{G}_i(\hat{\tilde{\bm{\tau}}}) = \hat{H}_i(\hat{\tilde{\bm{\tau}}}; \bm{Z}, \bm{\theta}_m) \hat{V}_i(\hat{\tilde{\bm{\tau}}}) + \left( 1 - \hat{H}_i(\hat{\tilde{\bm{\tau}}}; \bm{Z}, \bm{\theta}_m) \right) \hat{V}_i(\bm{1}_i; \hat{\tilde{\bm{\tau}}}_{-i}) \]

Equilibrium

\[ \hat{\tilde{\bm{\tau}}}^\star(\bm{\theta}_m; \bm{Z}_m) \]

Back

Wars II

Cost Distribution

\[ \hat{c}_{ji} = \frac{c_{ji}}{V_j \left( \bm{\tau}; v_j \right)} \]

\[ \text{Pr}\left( \frac{1}{\hat{c}_{ji}} \leq \frac{1}{\hat{c}} \right) = \hat{F}_{ji} \left( \frac{1}{\hat{c}} \right) = \exp \left( -\frac{1}{\hat{C}} \left( \frac{M_j}{M_i} \right)^{\gamma} W_{ji}^{-\alpha_1} Y_j^{\alpha_2} \hat{c}^{\eta} \right) \]

Wars II

Cost Distribution

\[ \hat{c}_{ji} = \frac{c_{ji}}{V_j \left( \bm{\tau}; v_j \right)} \]

\[ \text{Pr}\left( \frac{1}{\hat{c}_{ji}} \leq \frac{1}{\hat{c}} \right) = \hat{F}_{ji} \left( \frac{1}{\hat{c}} \right) = \exp \left( -\frac{1}{\hat{C}} \left( \color{bcOrange} \frac{ M_j }{ M_i } \color{black} \right)^{\gamma} W_{ji}^{-\alpha_1} Y_j^{\alpha_2} \hat{c}^{\eta} \right) \]

  • \(\color{bcOrange} \frac{M_j}{M_i}\) – military capability ratio (\(\gamma = 0 \implies\) no cost advantage for military superiority)

Wars II

Cost Distribution

\[ \hat{c}_{ji} = \frac{c_{ji}}{V_j \left( \bm{\tau}; v_j \right)} \]

\[ \text{Pr}\left( \frac{1}{\hat{c}_{ji}} \leq \frac{1}{\hat{c}} \right) = \hat{F}_{ji} \left( \frac{1}{\hat{c}} \right) = \exp \left( -\frac{1}{\hat{C}} \left( \frac{M_j}{M_i} \right)^{\gamma} \color{bcOrange} W_{ji}^{ \color{black} -\alpha_1} \color{black} Y_j^{\alpha_2} \hat{c}^{\eta} \right) \]

  • \(\frac{M_j}{M_i}\) – military capability ratio (\(\gamma = 0 \implies\) no cost advantage for military superiority)
  • \(\color{bcOrange} W_{ji}\) – geographic distance between \(j\) and \(i\) (\(\alpha=0 \implies\) no loss of strength gradient)

Wars II

Cost Distribution

\[ \hat{c}_{ji} = \frac{c_{ji}}{V_j \left( \bm{\tau}; v_j \right)} \]

\[ \text{Pr}\left( \frac{1}{\hat{c}_{ji}} \leq \frac{1}{\hat{c}} \right) = \hat{F}_{ji} \left( \frac{1}{\hat{c}} \right) = \exp \left( -\frac{1}{\hat{C}} \left( \frac{M_j}{M_i} \right)^{\gamma} W_{ji}^{-\alpha_1} \color{bcOrange} Y_j^{ \color{black} \alpha_2} \color{black} \hat{c}^{\eta} \right) \]

  • \(\frac{M_j}{M_i}\) – military capability ratio (\(\gamma = 0 \implies\) no cost advantage for military superiority)
  • \(W_{ji}\) – geographic distance between \(j\) and \(i\) (\(\alpha_1=0 \implies\) no loss of strength gradient)
  • \(\color{bcOrange} Y_j\) – attacker gdp (\(\alpha_2=0 \implies\) no advantage for larger countries)

Probability of Peace

\[ \hat{H}_i \left( \hat{\tilde{\bm{\tau}}}; \bm{Z}_m, \bm{\theta}_m \right) = \prod_{j \neq i} \hat{F}_{ji} \left( \left( \hat{V}_j \left( \bm{1}_i; \tilde{\bm{\tau}}_{-i} \right) - \hat{V}_j \left( \hat{\tilde{\bm{\tau}}} \right) \right)^{-1} \right) \]

Fréchet Distribution

Back

Cost Distribution

Fréchet distribution. Source

Back

Calibration and Identification (Intuition)

Calibration

  • \(\hat{C}=\) 25
  • \(\eta=\) 1.5

Preferences (\(\bm{v}\))

  • Holding military technology fixed, \(i\)’s overall level of protectionism informs about \(v_i\)
  • Governments with higher trade policies (more protectionist) have higher \(v_i\)

Military Technology

  • Holding preferences fixed, heterogeneity in observed policies informs about military parameters
  • \(\alpha_1\) – does policy favoritism covary with distance from trade partner?
  • \(\gamma\) – does policy favoritism covary with military capability ratio?

Back

Appendix: Estimation

Best Response MPEC

Choice Variables

\[ \hat{\bm{x}}_i = \left( \hat{\tilde{\bm{\tau}}}_i, \hat{\bm{w}} \right) \]

Best Response

\[\begin{equation*} \begin{split} \max_{\hat{\bm{x}}_i} & \quad \hat{G}_i(\hat{\bm{w}}; \bm{\theta}_m) \\ \text{subject to} & \quad \hat{\bm{w}} = \hat{h}(\hat{\tilde{\bm{\tau}}}) \end{split} \end{equation*}\]

Lagrangian: \(\mathcal{L}_i(\hat{\bm{x}}_i, \bm{\lambda}_i)\)

Optimality Condition

\[ \nabla_{\hat{\tilde{\bm{\tau}}}_i} \mathcal{L}_i(\hat{\bm{x}}_i, \bm{\lambda}_i; \bm{\theta}_m) = \bm{0} \]

Back

Appendix: Results

Model Fit

Back

Errors

Back

Non-Coercive Model

Back

Non-Coercive Model Fit

Back

Appendix: Counterfactuals

Multipolarity, Trade Policy, and International Trade (I)

Multipolarity, Trade Policy, and International Trade (II)

  • Value of global trade under multipolarization is 110.3 percent its baseline value

Back

Chinese Preference Liberalization and the Risk of War

  • \(\hat{v}_{\text{CHN}}=\) 2.77, \(v_{\text{CHN}}^\prime=\) 1.52
  • Reduces probability of U.S.-China war from 33.3 percent to 5.9 percent

Back


Art, Robert J. 1996. “American foreign policy and the fungibility of force.” Security Studies 5 (4): 7–42.

Autor, David H, David Dorn, and Gordon H Hanson. 2013. “The China syndrome: Local labor market effects of import competition in the United States.” The American Economic Review 103 (6): 2121–68.

Bagwell, Kyle, and Robert W. Staiger. 1999. “An economic theory of GATT.” American Economic Review 89 (1): 215–48.

Berger, Daniel, William Easterly, Nathan Nunn, and Shanker Satyanath. 2013. “Commercial imperialism? Political influence and trade during the Cold War.” The American Economic Review 103 (2): 863–96.

Boulding, Kenneth E. 1962. “Conflict and defense: A general theory.”

Brito, Dagobert L., and Michael D. Intrilagator. 1985. “Conflict, War, and Redistribution.” American Political Science Review 79 (4).

Bruce Bueno de Mesquita. 1980. “An Expected Utility Theory of International Conflict.” The American Political Science Review 74 (4): 917–31.

Carroll, Robert J. 2018. “War and Peace in the Marketplace.”

Cooley, Brendan. 2019. “Estimating Policy Barriers to Trade.”

Costinot, Arnaud, and Andrés Rodríguez-Clare. 2015. “Trade Theory with Numbers: Quantifying the Consequences of Globalization.” Handbook of International Economics 4: 197–261.

Dahl, Robert A. 1957. “The Concept of Power.” Behavioral Science 2 (3): 201–15.

Dekle, Robert, Jonathan Eaton, and Samuel Kortum. 2007. “Unbalanced trade.” AEA Papers and Proceedings 97 (2): 351–55.

Diehl, Paul F. 1985. “Continuity and Military Escalation in Major Power Rivalries, 1816-1980.” The Journal of Politics 47 (4): 1203–11.

Eaton, Jonathan, and Samuel Kortum. 2002. “Technology, geography, and trade.” Econometrica 70 (5): 1741–79.

Fearon, James D. 1995. “Rationalist explanations for war.” International Organization 49 (03): 379–414.

Findlay, Ronald., and Kevin H. O’Rourke. 2007. Power and plenty : trade, war, and the world economy in the second millennium. Princeton University Press.

Gallagher, John, and Ronald Robinson. 1953. “The Imperialism of Free Trade.” The Economic History Review 6 (1): 1–15.

Garfinkel, Michelle R, Stergios Skaperdas, and Constantinos Syropoulos. 2011. “Trade in the Shadow of Power.”

Gartzke, Erik, and Alex Braithwaite. 2011. “Power, Parity and Proximity.”

Gawande, Kishore, Pravin Krishna, and Marcelo Olarreaga. 2009. “What governments maximize and why: the view from trade.” International Organization 63 (03): 491–532.

Gilpin, Robert. 1981. War and change in world politics. Cambridge University Press.

Goldberg, P K, and N Pavcnik. 2016. “The Effects of Trade Policy.” Handbook of Commercial Policy 1: 161–206.

Gowa, Joanne, and Edward D Mansfield. 1993. “Power Politics and International Trade.” The American Political Science Review 87 (2): 408–20.

Grossman, Gene M, and Elhanan Helpman. 1994. “Protection for Sale.” The American Economic Review, 833–50.

———. 1995. “Trade Wars and Trade Talks.” Journal of Political Economy, 675–708.

Grossman, G. M. 2016. “The Purpose of Trade Agreements.” In Handbook of Commercial Policy, 380–434.

Head, Keith, and Thierry Mayer. 2014. “Gravity Equations: Workhorse, Toolkit and Cookbook.” In Handbook of International Economics, edited by Elhanan Helpman, G. Gopinath, and K. Rogoff, 4th ed., 131–96.

Hirschman, Albert O. 1945. National power and the structure of foreign trade. Univ of California Press.

Kim, In Song. 2017. “Political cleavages within industry: firm-level lobbying for trade liberalization.” American Political Science Review 111 (1): 1–20.

Kindleberger, Charles P. 1986. The World in Depression, 1929-1939: Revised and enlarged edition. Vol. 4. Univ of California Press.

Krasner, Stephen D. 1976. “State power and the structure of international trade.” World Politics 28 (03): 317–47.

Lake, David A. 2007. “Escape from the State of Nature: Authority and Hierarchy in World Politics.” International Security 32 (2): 47–79.

———. 2013. “Legitimating Power: The Domestic Politics of U.S. International Hierarchy.” International Security 38 (2): 74–111.

Lemke, Douglas. 1995. “The Tyranny of Distance: Redefining Relevant Dyads.” International Interactions 21 (1): 23–38.

Maggi, Giovanni. 1999. “The role of multilateral institutions in international trade cooperation.” American Economic Review, 190–214.

Markowitz, Jonathan N, and Christopher J Fariss. 2013. “Going the Distance: The Price of Projecting Power.” International Interactions 39: 119–43.

Martin, Philippe, Thierry Mayer, and Mathias Thoenig. 2012. “The Geography of Conflicts and Regional Trade Agreements.” American Economic Journal: Macroeconomics 4 (4): 1–35.

Mayer, Wolfgang. 1984. “Endogenous Tariff Formation.” The American Economic Review 74 (5): 970–85.

Osgood, Iain. 2016. “Differentiated Products, Divided Industries: Firm Preferences over Trade Liberalization.” Economics & Politics 28 (2): 161–80.

Ossa, Ralph. 2011. “A " New Trade " Theory of GATT/WTO Negotiations.” Journal of Political Economy 119 (1): 122–52.

———. 2012. “Profits in the "New Trade" Approach to Trade Negotiations.” American Economic Review: Papers & Proceedings 102 (3): 466–69.

Piccione, Michele, and Ariel Rubinstein. 2007. “Equilibrium in the Jungle.” The Economic Journal 117 (522): 883–96.

Powell, Robert. 1994. “Review: Anarchy in International Relations Theory: The Neorealist-Neoliberal Debate.” International Organization 48 (2): 313–44.

———. 1999. In the shadow of power: States and strategies in international politics. Princeton University Press.

Queralt, Didac. 2015. “From Mercantilism to Free Trade: A History of Fiscal Capacity Building.” Quarterly Journal of Political Science 10: 221–73.

Rodrik, Dani. 2008. “Second-Best Institutions.” American Economic Review: Papers & Proceedings 98 (2): 100–104.

Rogowski, Ronald. 1987. “Political Cleavages and Changing Exposure to Trade.” The American Political Science Review 81 (4): 1121.

Seitz, Michael, Alexander Tarasov, and Roman Zakharenko. 2015. “Trade costs, conflicts, and defense spending.” Journal of International Economics 95 (2): 305–18.

Skaperdas, Stergios. 2001. “The political economy of organized crime: providing protection when the state does not.” Economics of Governance 2 (3): 173–202.

Su, Che Lin, and Kenneth L. Judd. 2012. “Constrained Optimization Approaches to Estimation of Structural Models.” Econometrica 80 (5): 2213–30.

Viner, Jacob. 1948. “Power Versus Plenty as Objectives of Foreign Policy in the Seventeenth and Eighteenth Centuries.” World Politics 1 (1): 1–29.